
RESEARCH AND DEVELOPMENT IN ADVANCING FLUIDLESS SNOW WATER 

CONTENT MONITORING 

Anne Heggli1, Matthew Heggli1, and Todd Trauman1 

ABSTRACT 

The U.S. Department of Agriculture (USDA) has coordinated the cooperative effort in snow surveying and 

water supply forecasting in the Western States since 1935. This initially involved the Research and Development 

(R&D) of progressive snowpack monitoring techniques, eventually bringing automated measurements that transmitted 

data directly to their office. The advances in snowpack monitoring provided more reliable and timely forecasts vital 

for farmers, business owners, and communities. The technology that is currently used to continuously measure Snow 

Water Equivalent (SWE), the snow pillow, was developed in the 1960’s, over 50 years ago. The snow pillow has been 

the only reliable SWE sensor despite the inherent limitations. With limited improvements in SWE monitoring to date, 

Alpine Hydromet set out to develop technology towards bringing a better solution for operators. This summarizes the 

R&D of two SWE sensors that aim to phase out the traditional fluid snow pillow while developing more reliable and 

robust technologies; the Fluidless Snow Pillow (FSP) and Cosmic Ray Detector (CRD). This analysis presents an in-

depth analysis of comparative data from the winter of 2016-17 and 2017-18 (partial winter through April, 2018) as 

tested at the UC Berkeley Central Sierra Snow Laboratory (CSSL). (KEYWORDS:  snow water content, snow pillow, 

fluidless snow pillow, cosmic ray) 

INTRODUCTION 

The western United States is confronting a critical situation associated with climate variability that produce 

challenges with water supply and managing extreme events. Trending decrease in snowpack and an increase in water 

security concerns is creating economic concerns for many states. Snow Water Equivalent (SWE) monitoring 

instrumentation was developed over 50 years ago. The snow pillow has been the only reliable SWE sensor despite 

many limitations. SWE and snow depth is measured to calculate the density of snow. The density of the snow is used 

to forecast when spring runoff will begin. SWE is also used to quantify the amount of water which are both fed into 

river forecast models. These models are derived from regression analysis of snow course data, precipitation, soil 

moisture, and observed streamflow in the basin where more than 20 years of data has been used (Palmer, 1986). 

The technical, economic, social, and other benefits are vast for all operators in water supply management, 

flood warning systems, farmers, and climatologist. Improved data gives agencies more reliable and timely forecasts 

vital for farmers, business owners, and communities. The estimated cost is relatively low while expected ongoing 

benefits of providing more reliable data reaches every aspect of the economy, especially in the western half of the 

U.S. The need has been identified by both Federal and State agencies, but both lack sufficient resources to research, 

develop, fabricate, and commercialize the needed scientific instrumentation. 

USDA Natural Resources Conservation Service (NRCS) analyzed the importance of SWE for agriculture, 

recreation, flood management, and power generation. Their findings revealed that 50 - 80 % of water supply in the 

western United States comes from the snowpack (United States Department of Agriculture, n.d.).  In recent years, 

rain-on-snow events have proved increasingly problematic with flooding. Understanding the snowpack and its water 

content is critical for adjusting models used for river forecasting and reservoir operations. 

THE PROBLEM:  SNOW PILLOWS AND THE INHERENT LIMITATIONS 

_______________________________________ 
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Snow pillows are installed with slight variations, but all with the same principle based on the weight of the 

snowpack over the sensor. A standard NRCS SNOw TELemetry (SNOTEL) snow pillow is a polypropylene (rubber) 

bladder that is 10 ft in diameter. The SNOTEL pillows are installed with a 165-gallon 50-50 solution of propylene 

glycol-ethanol and water (United States Department of Arigulture, Natural Resources Conservation Service, 2015). A 

pipe fitting near an edge on the bottom of the pillow is plumbed to a structure that houses the electronics. The pressure 

line is connected to a pressure transducer to determine weight and converted to SWE.  

There are many limitations to the traditional snow pillow developed in the 1960’s. There are environmental 

concerns and local land owners have placed increasing pressure on the agencies to discontinue the use of the propylene 

glycol-ethanol solution. The Forest Service will not allow the use of any new measurement technology using bulk 

chemicals to be installed within a national forest. The fluid must be transported to the site location. Many stations do 

not have or allow vehicle access which means barrels must be sling loaded on helicopters or strapped to horses and 

packed in on multi-day expeditions. Both items limit the expansion of the water supply forecasting network where 

needed. 

Site maintenance is difficult largely due to damage of the sensor caused by human and animal activity. NRCS 

states that over 12 snow pillows are damaged by bears every year (United States Department of Agriculture, n.d.). 

Damage by insects and other animals can damage the pillow or plumbing. Sometimes pin-hole leaks are created that 

go undetected until the pressure of the accumulating snowpack causes the pillow to leak.  This leads to the snow pillow 

going flat which results in loss of record for that winter (Osterhuber et al., 1998). The pillow must then be replaced 

with a new bladder and more barrels of fluid. 

Finally, snow pillows operate on a weighing principal. Snow accumulates over time, the increase in weight 

is representative of added water content in the snowpack. Storms arrive with varying conditions and complicate the 

measurement process. Some events are cold and some warm, weather between snowfall will affect the top layer of 

snow to then be covered by fresh snowfall. Each layer creates a new dynamic/structure within the snowpack. If a solid 

ice layer forms, it acts as a bridge, referred to as bridging, and will not allow the transfer of weight of new snow down 

the snowpack and onto the pillow. In addition, the formation of strong basal layers in deep snowpack also causes 

bridging. Once these bridges are formed, the subsequent snowfall may not be detected until later in the season when 

warming occurs and the bridge collapses (Osterhuber et al., 1998). Prior to the bridge collapsing, incorrect 

measurement of SWE degrade water supply forecasts.  

RESEARCH & DEVELOPMENT (PRE-2015) 

Solid State Snow Pillow/Fluidless Snow Pillow 

The principle research for a fluidless snow pillow based on loadcells was first researched by Jerome B. 

Johnson who at the time worked for the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) in 

Wainwright, Alaska. Over the winters of 2005-06 and 2006-07 CRREL and NRCS tested an electronic, solid state, 

FSP prototype referred to as the e-SWE sensor. This first design was 3.2-meters square (surface area of 10.24 m2) and 

consisted of 1 center weighing panel measuring 1.2-meters square (measurement area of 1.44 m2) and 8 outer panels. 

Measurements were also made from one of the outer panels to determine how side stress affects the measurement. In 

2008, Jerome Johnson of CRREL began working as a Research Professor at the University of Alaska, Fairbanks where 

he continued efforts to produce a loadcell-based snow pillow. In 2012-13 two smaller e-SWE sensors were installed, 

1.8 m2 and 1.2 m2, to determine any variation in sensor performance due to size (Johnson et al., 2015). 

The results of the research and development funded by the NRCS were promising; however, there were several 

areas requiring improvement that were never addressed prior to the defunding of the program. First, maximum range 

tested for the design never exceeded 1200 mm of SWE and there are many locations in the Western United States, 

and specifically west coast mountain ranges, that get higher values up to 3000 mm SWE. Based on research and 

development of the fluid snow pillow, it is known that a 4.88 m2 area would be inadequate for deep snowpack (USDA 

NRCS, 2015). Second, sensor calibration was done in the field or postprocessed based on manual snow core 

measurements. Field calibration requires transportation of weights to the measurement location to perform calibration 

in the field, which is not practical. Manual snow core measurements have accuracies of 9 % to 11 % which limits the 

e-SWE accuracy to that of the snow core measurement (Johnson et al., 2015). Third, the sensor construction had each

panel isolated from the adjacent panel which resulted in an uneven measurement surface by the end of winter. Over
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the winter the panels settled unevenly from the pressure of the snow and created an uneven surface that needed to be 

adjusted. A second field calibration would be required after the settling of the panels (Johnson et al., 2015). It is not 

known at what point during the winter the settling of the panels occurred and the effect on the measurement.  

 

There were other developments that the NRCS wanted incorporated into an optimal system, such as improved 

signal output, inbuilt signal processing, and solid frame design which remained unaddressed. These concerns were 

brought to the attention of Alpine Hydromet and became design objectives.  

 

Cosmic Ray Attenuation 

The cosmic ray attenuation sensor is an innovative approach to SWE monitoring. The initial research and 

development was performed at the UC Berkeley CSSL. The CSSL and California Cooperative Snow Surveys at DWR 

were approached by researcher Ken Condreva from Sandia Laboratories. Mr. Condreva was tasked to find civilian 

uses for radiation detection and telemetry systems which had been applied for military use. Radiation detection 

methods had the capacity to measure the quantity of water, regardless of state, and therefore could measure the amount 

SWE in a snowpack.  

 

During the winter of 1996-97, the collaborators installed a test sensor at the CSSL. Osterhuber et al. (1998) showed 

promising results and outlined key areas that require additional research. During the summer of 1997, the sensor was 

also tested in a body of water and achieved measurements up to a depth of 7600 mm of water.  

 

RESEARCH AND DEVELOPMENT CONTINUED BY ALPINE HYDROMET (2015-PRESENT) 

 

FSP5 & FSP9 - Fluidless Snow Pillow 

Alpine Hydromet began the design process for a fluidless snow pillow based on the preliminary research 

efforts by CRREL and NRCS. As necessary results were not being achieved by research and other commercial 

agencies to date, Alpine Hydromet decided to pursue solutions that it believed had promise. Alpine Hydromet visited 

the NRCS National Water and Climate Center in November of 2015 to review initial designs with key NRCS 

individuals and began prototype fabrication in Auburn.  

 

The initial objective was to continue research carried out to date and answer one simple question: is 

measurement area or total surface area more important for SWE measurement in a solid state SWE sensor? Alpine 

Hydromet began to build the FSP5 (1.5-meter square) and FSP9 (2.7-meter square), both with a 0.9-meter square 

measurement area. Table 1 shows the comparison of measurement area and surface area in square meters for the FSP5, 

FSP9 and SNOTEL snow pillow at the CSSL. This design was modeled after the CRREL design but with key design 

objectives; (1) keep signal conditioning electronics out of the snow, (2) have no single piece longer than 4 feet (1.2 

m) or weigh more than 35 lbs. (about 16 kg), (3) have the sensor mounted on a single rigid base and (4) have SDI-12 

output for simple data connectivity to the existing data collection network.  

 

In the spring of 2016, a beta test for proof-of-concept for the FSP design was tested in a dug-out and 

reconstructed snowpack. The success of the beta test led to a full design by fall of 2016 for a pilot study of two fluidless 

snow pillow models, the FSP5 and FSP9. The objective of this study was to compare snow water equivalent (SWE) 

monitoring sensors at the CSSL over the winter of 2016-17 and 2017-18. There are three in-situ measurement devices; 

1) Alpine Hydromet FSP5, 2) Alpine Hydromet FSP9, and 3) Stainless Steel Snow Pillow. The snow tube 

measurement, commonly used as the standard for ground truthing SWE, was used as a reference to the automated in-

situ sensors in the study. 

 

CRD – Cosmic Ray Detector 

Alpine Hydromet worked in collaboration with CSSL to deploy a beta cosmic gamma detector during 2016-

17. The sensor cable connector was not sufficiently durable and disconnected with the first rain-on-snow event. 

Limited data were collected for a small range of SWE. The results were consistent with the findings from the studies 

performed in the mid-1990’s and the relationship between the cosmic ray attenuation can be used calculate SWE. A 

new housing was engineered and fully tested submerged in 168 cm of water for 48 hours. The unit was also raised and 

lowered to varying depths to verify the measurement of water content tracked the known depth of water. A more 

robust design was installed and captured a full winter of data in 2017-18. 
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STUDY LOCATION & INSTRUMENTATION 

Study Location and Data Acquisition 

The study location, CSSL, near Soda Springs, on the Western side of the Donner Summit at 2,100 m 

elevation. A layout of the Central Sierra snow lab facility and SWE monitoring sensors are displayed in Figure 1 for 

2016-17 and in Figure 2 which included the CRD in the test field study. 

Data used in this study are provided in the form of monthly reports and real-time data by: 1) CSSL for manual 

SWE measurements, cumulative Precipitation, percentage and amounts of rain and snow, snow depth, and outside 

temperature; 2) NRCS snow pillow SWE and ambient temperature; and 3) Alpine Hydromet for FSP5, FSP9 and 

CRD.  

Figure 1.  2018 UCB Central Sierra Snow Lab 2016-17 sensor configuration 

Alpine Hydromet FSP9 Alpine Hydromet FSP5 

NRCS Stainless Steel Snow 

Pillow 
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Figure 2.  UCB Central Sierra Snow Lab 2017-18 with the addition of the CRD ground and reference detector 

Alpine Hydromet FSP5 and FSP9 

The Alpine Hydromet FSP5 and FSP9 is a modular fluidless snow pillow that uses four load cells to measure 

the weight of snow over a 0.84 m² measurement area. The load cells come with a 20 m cable which is run to an 

electronics box (where the load cell signals are processed) that is in a water tight enclosure next to a data logger. The 

purpose of the long cable lengths is to meet the first objective of removing any electronics enclosures from beneath 

the snow, eliminating potential failure from water intrusion damage to the electronics box. The electronics box 

provides an SDI-12 digital output to the data logger. There is only one major difference in the FSP5 and FSP9. The 

FSP5 comes with four 0.3 m perimeter stress panels while the FSP9 comes with eight 0.91 m perimeter stress panels. 

A comparison of the measurement area, surface area, and buffer panels for the FSP and SNOTEL snow pillow can be 

found in Table 1. The perimeter stress panels are designed to help with differential thermal conductivity between the 

soil and the aluminum measurement area and help to eliminate perimeter side stress from the snowpack. The 

measurement range of the FSP5 and FSP9 are 3000 mm with an accuracy of 0.3 % and a resolution of 1 mm. 

Table 1.  Weighing principle SWE monitoring sensors comparison 

Manufacturer Model 
Type of 

Measurement 

Anti-

freeze 

Total 

Surface 

Area (m²) 

Measurement 

Area (m²) 

Side Buffer 

Width (m) 

Alpine Hydromet FSP5 Load Cells No 2.3 0.84 0.3 

Alpine Hydromet FSP9 Load Cells No 7.5 0.84 0.91 

CRREL/Johnson E-SWE Load Cells No 10.24 1.44 0.9 

Stainless Steel 

Snow Pillow 
150” Druck 

Pressure 

Transducer 
Yes 5.95 5.95 N/A 

Alpine Hydromet FSP9 

Alpine Hydromet FSP5 

CRD (Cosmic Ray 

Detector) 
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Alpine Hydromet CRD 

Gamma rays routinely enter the earth’s atmosphere as primary cosmic radiation. Primary cosmic radiation 

collides with nuclei sending a shower of secondary charged and neutral particles known as secondary cosmic radiation 

into the earth’s environment. The cosmic radiation detection that Alpine Hydromet is studying is the measurement of 

secondary cosmic gamma radiation. Osterhuber et al. (1998) explains that gamma rays penetrate many terrestrial 

objects including snow, where the signal is reduced based on the quantity of water in the snow. Alpine Hydromet 

incorporates an instrument to measure the incoming cosmic radiation above and below the snowpack and developed 

an equation to convert the attenuation of the gamma radiation through the snowpack to the quantity of water present 

in the snowpack (SWE). 

 

The CRD is about 107 cm long, 20 cm wide, and 13 cm high. The application of a reference sensor above 

the snowpack assures that fluctuation in atmospheric conditions are cancelled out to measure the attenuation of the 

snowpack below. Further research is being done to see if the reference detector can be removed with specific site 

calibration or correction for known meteorological conditions.  

 

Stainless Steel Snow Pillow 

The stainless-steel snow pillow is a large bladder with a surface area of 5.95 m² (Anderson, 2017). The 

bladder is filled with antifreeze and plumbed to a pressure transducer that is in a nearby shed (about 23 m away). The 

pressure transducer provides a signal to a data logger as pressure associated with the accumulation of snow over the 

snow pillow. The surface of the pillow is covered with gravel. The range of sensor is 3800 mm with a stated accuracy 

of 0.15 % and resolution of 2.54 mm. 

 

DATA REVIEW 

 

All data shown is raw data that have not been corrected or edited. Prior to SWE analysis it is important to 

understand that for the weighting-based solutions the accuracy of the sensing device does not necessarily relate to 

accuracy of snow water content because of the influence of snow dynamics. Accuracy is based on applied weight to 

the sensors. Deeper snow packs may develop uneven pressure areas resulting in different applied forces to the sensors 

(Natural Resource Conservation Service, 2014). Snow tube measurements are the closest measurement to ground 

truthing though they are also known to have measurement errors. The measurement error is not only caused by the 

ability to drive the snow tube down orthogonal to the horizontal plane but can also be a function of “snow height, 

snow layer hardness and density, cutter sharpness and temperature gradients within the snowpack” (Osterhuber, 2014). 

 

Winter 2016-2017 

The winter of 2016-17 produced historic precipitation and snowpack accumulations at the CSSL. According 

to CSSL records, 2016-17 was the wettest winter on record and 9th most in snowfall accumulation. Through April, 

2938 mm of precipitation with 1429.5 cm of snow fall was measured. There were also ten rain-on-snow events, and 

four of these ten rain-on-snow events were significant events ranging from 98 mm to 247 mm of rainfall. The four-

major rain-on-snow events all occurred relatively early in the season, between December 7th and February 11th. This 

contributed to changes in the snow dynamics, runoff, and malfunction to the NRCS snow pillow. Figure 3 provides 

an overview of the winter. The left axis represents millimeters (mm) for daily precipitation accumulation, hourly SWE 

measurements from FSP5, FSP9, SNOTEL snow pillow and incremental manual SWE measurements. The right axis 

represents degrees Celsius for the hourly temperature readings. Table 2 shows the dates of the four events along with 

the quantities and percentages of precipitation in rain and snow. 
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Figure 3.  Winter 2016/2017 Cumulative Precipitation, Temperature and SWE and snow depth. Chart also includes 

identification of the four-significant rain-on-snow event periods. 

 

 

Table 2.  Four major rain-on-snow events, including precipitation totals and percentages. Event precipitation 

quantities provided by the CSSL 

 

The first two rain-on-snow events occurred within a ten-day period (December 7th -17th) and only three days 

apart, resulting in 239 mm of rainfall. The first event caused the data cable of the prototype CRD to disconnect from 

the ground sensor and no further data was collected past December 10th, 2016 with the CRD. Figure 4 shows the CRD, 

core measurements, and SNOTEL snow pillow SWE data. The CRD was initially installed on the south side of the 

house in a shaded area away from the main exposed test bed.  

 

 

 

 

Event #3 Event #4 
Event 

#1 & #2 

Event Date  Event Precipitation (mm) Rain (%) 

           Total         Rain         Snow 

#1 Dec. 7th-10th 152 141 11 92 

#2 Dec. 13th-17th 128 98 30 76 

#3 Jan. 7th-12th 399 184 215 46 

#4 Feb.  2nd-11th 456 247 209 54 
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Figure 4.  Comparison of CRD, manual core measurements and SNOTEL snow pillow SWE data. 

Rain-on-snow Event #3 occurred between January 7th-12th resulting in 399 mm of precipitation, 184 mm in 

rainfall. Event #3 was an extreme event in which a channel of water flowed into the ground floor of a nearby structure 

which housed the pressure transducers for the stainless-steel snow pillow. Fortunately, the structure was accessible, 

and the pressure transducers were able to be replaced, limiting the data loss to only 10 days.  

Rain-on-snow Event #4, the largest rainfall event of the winter occurred between February 2nd-February 11th, 

resulting in 456 mm of precipitation, 247 mm being in the form of rainfall. This is the same event that resulted in the 

near failure of the Oroville Dam. Following Event #4, FSP5 and FSP9 began to undermeasure. It is believed that snow 

dynamics influenced by Event #4 contributed to the undermeasurement of FSP5 and FSP9. Figure 5 shows a graph of 

the February events. Table 2 provides daily values and percentages of precipitation (snow and rain) along with 

temperature highs and lows for Event #4.   

Figure 5.  February rain-on-snow and following weather indicative of crust formation. 
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Change in snow layer density, hardness, or the formation of a bridge may have occurred over the FSP5 and 

FSP9. As seen in Figure 5, Event #4 rain-on-snow event was followed with three consecutive days of warmer weather, 

with daily high temperatures between 9 °C to 11 °C. This warmer weather was followed by a cold snow event where 

234mm of snow fell over eight days and temperature stayed below 0 °C with lows ranging from -9 C to -14 °C.  

 

Sensors based on a weighing principle can be impacted by differential pressure caused by lack of uniformity 

of the snowpack and bridging. Rain-on-snow events and warm temperatures followed by cold temperatures can impact 

the snow dynamics of the snowpack. Snow layer density, snow hardness and ice lenses can all influence the pressure 

distribution of the snow on weight measurement devices. Ice lenses can cause an under measurement as future 

snowpack accumulates by supporting the weight accumulation. One way to attempt compensation for variation in 

snow pressure and bridging is to increase the surface area of the snow pillow. Though differences may occur between 

each sensor based on the location of installation and how snow water channels form within the snowpack, it was seen 

that the larger surface area of the traditional snow pillow may have helped with more reliable measurements than the 

smaller measurement area sensors. 

 

Winter 2017-2018 

For the winter of 2017-18 Alpine Hydromet reinstalled the Cosmic Ray Detector (CRD). Over the summer 

or 2017 Alpine Hydromet redesigned the CRD housing with an all-aluminum, powder coated and gasketed enclosure 

with IP68 rated, marine grade, stainless steel cable glands. The sensor was then tested submerged in 168 cm of water 

for 48 hours prior to the installation in 2017-18 winter. This also allowed for the verification of the attenuation to 

SWE curve against known quantities of water content. 

 

The 2017-18 winter started off dramatically different from the previous winter with signs of a dry year until 

March. The snowpack entered February at about 33% of average and 50 mm of cumulative precipitation (100 % 

snowfall) for the entire month of February. In contrast, “Miracle March” as the media proclaimed, brought 530 mm 

of precipitation bringing peak snow height to 76 % of average at 2320 mm on March 17th and peak SWE to 72 % of 

average at 670 mm on March 26th (Osterhuber, Personal Communication, UCB Central Sierra Snow Laboratory, 

2018). An overview of the 2017-18 winter is shown in Figure 6. 

 

Figure 6.  2017-18 SWE comparison at the CSSL of the Alpine Hydromet FSP5, FSP9, and CRD, and manual core 

measurements with a federal sampler, and NRCS SNOTEL snow pillow edited SWE data, precipitation and air 

temperature (left axis). 
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The installation location of the FSP5 and CRD were the first sensor locations to melt out. The CRD was 

placed near a tower which likely affected snow melt by welling during ablation periods. The FSP9 and SNOTEL snow 

pillow both stay covered with snow longer than the FSP5 and CRD. The winter of 2017-18 had a mid-winter melt out 

at the CSSL due to warmer weather and rain-on-snow events. The snow height December 20th, 2017 was 32 cm and 

dropped to 18 cm by January 18th, 2018 at the location of the snow core measurements. However, at this time due to 

the nature of the melt pattern at the CSSL, the CRD and FSP5 locations had both melted out completely and left both 

sensors exposed.  

There was one more significant snow event at the end of January which brought 56 mm of snowfall followed 

by about two weeks of maximum temperatures above 10 °C. The warmer weather was followed but a cold snap with 

lows reaching -18 °C at night and a total 184 mm of snowfall in the next two storms that both the FSP5 and FSP9 

were not able to register. The warm weather followed by the cold front and snowfall lead to crust formation.  It is very 

likely that the crust affected the distribution of the weight of snow on to both the FSP5 and FSP9. Following the cold 

snow events two rain-on-snow events occurred. The first was March 10th and the second on March 14th. These events 

broke the crust layer allowing for the snow weight to be transferred onto the sensors and both sensors resumed normal 

measurement of the snowpack. 

The 2017-18 data collection was successful since all four SWE sensors measured peak SWE at the same time 

and, minus the CRD which was installed next close to a tower and subject to effects of welling, the sensors all came 

to zero SWE within a day or two of each other. The CRD has proved successful and the most reliable sensor of the 

winter as the SNOTEL data also became subject and was edited to correct errors in the sensor that were experienced 

around the same time the FSP measurements were not experiencing effects of complex snow dynamics.  

CONCLUSIONS 

The 2016-17 winter was the wettest on record at the UCB Central Sierra Snow Lab and ranked 9th historically 

for snowfall. Ten rain-on-snow events impacted the snow dynamics and tested the durability and accuracy of the 

automated SWE measurement devices. 2017-18 brought a different type of snowpack formation with early snow 

turned crust, mid-winter partial melt-out followed by substantial snow in March, and late winter rain-on-snow events. 

The FSP5, FSP9 and redesigned CRD sensors appeared robust and reliable in providing representative SWE data.  

Research in the FSP concluded that while a sensor buffer perimeter may be necessary, the important area for 

data correlation was the measurement area. A larger total surface area (increased size of side panels) did not provide 

increased data accuracy as the data indicates limitation with deeper snowpack in both FSP5 and FSP9 models. There 

remains a question on the relationship between optimal measurement area and maximum SWE, and this likely also 

varies with not only the depth of snow, but the density of snow and the formation of crust layers. It is likely that the 

optimal measurement area may vary by region, with the maritime coastal environment requiring larger measurement 

area, and the inland continental air mass areas requiring smaller measurement area. Continued research in 

collaboration with network operators would be beneficial for the develop a sensor with a larger measurement area. 

The inherit limitation with any weighing-based principle are addressed with the CRD. It is expected that 

continued research into the measurement can add value in the snow data by potentially recognizing rain-on-snow 

accumulation and drainage in the snow pack. There is also potential in minimizing the effects of bridging by increasing 

the measurement area of the FSP to be like that of standard snow pillows for locations with complex snow dynamics 

and structures.  
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