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ABSTRACT 

 

 Seasonal water supply forecasts are a critical component of water management strategies in Mediterranean 

climates, where most precipitation falls outside the growing season and the water supply is dependent on sub-annual 

storage. Successful runoff forecasting not only depends on the skill of the chosen model but also necessitates a 

critical evaluation of uncertainty. The severity of the 2021 drought in the Sierra Nevada (California, USA) fell 

outside the historical uncertainty ranges of many statistical water supply forecasts. Here, we develop a flexible 

framework to separate the impact of hydrological and meteorological uncertainty sources on forecast confidence 

intervals under a range of antecedent conditions, illuminating observations of heightened forecast uncertainty during 

2021 and other drought seasons. Using empirical runoff models of varying complexity to represent a range of 

forecasting methods, we constrain six water balance equations for the upper Tuolumne and Merced Rivers using 

full-catchment estimates of snow water equivalent (SWE) from the Airborne Snow Observatory  (ASO) and in-situ 

precipitation measurements. Bayesian sampling of each model’s parameter space enables quantification of 

parameter uncertainty and process variability for each model, and by propagating distributions of post-forecast 

precipitation through the water balance equations, we demonstrate the separation of uncertainty arising from 

variations in spring precipitation from uncertainty arising from the hydrological models. Results indicate that the 

uncertainty of statistical water supply forecasts increases nonlinearly under low-SWE conditions, primarily due to 

the importance of spring precipitation variability. We suggest that the resiliency of water supply forecasts can be 

improved by separately propagating uncertainty from random errors and physical variations to more adequately 

characterize forecast confidence in a warmer future with reduced-SWE winters. (KEYWORDS:  forecast 

uncertainty, Airborne Snow Observatories, spring precipitation, drought, climate) 
 

INTRODUCTION 

 

 The synthesis of snow measurements with runoff models to generate water supply forecasts is a crucial 

component of the water management paradigm in western North America, where snowpack storage supplements 

artificial water storage capacities (Dettinger & Anderson 2015). However, forecasts always contain some degree of 

uncertainty, and water management decisions are characteristically hedged against the possibility of worse-than-

expected droughts (Stillinger et al. 2021). As such, robustly quantifying uncertainty in runoff forecasts is of the 

utmost importance for increasing confidence in water supply management decisions. 

 

 While the high-precipitation winters and low-precipitation springs typical of California’s climate have 

historically enabled skillful runoff forecasts in the Sierra Nevada (Pagano et al. 2004), significant discrepancies have 

been noted between forecast values and observed water yields under increasingly variable hydrologic conditions, 

particularly in the runoff season of 2021, when surprising forecast overpredictions led to calls for an investigation of 

“missing” streamflow (Abatzoglou et al. 2021). The California Department of Water Resources (DWR) said of 2021 

that historical relationships between snowpack and runoff “fell apart this year” (Sean de Guzman, chief of snow 

surveys and water supply forecasting for DWR, in Rogers 2021). Was 2021 an exceptionally unlucky year, or is the 

mismatch between modeled uncertainty ranges and observed variation likely to become a persistent problem in the 

future? To investigate this question, we employ the results of novel snow monitoring techniques to constrain the 

majority of uncertainty in the water balance, thereby enabling an analysis of residual hydrological and 

meteorological uncertainty sources. 
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 As anthropogenic climate warming proceeds, temperature-related effects are expected to disproportionately 

affect mountain regions due to elevation-dependent warming (Pepin et al. 2015), and single-degree temperature 

increases may lead to reductions in mountain SWE storage of 20% to 40% (Huning & AghaKouchak, 2018). With 

the potential for multi-year periods of significantly reduced snowpack in the Sierra within the next several decades 

(Siirila-Woodburn et al. 2021), assumptions of climate stationarity are no longer valid (Milly et al. 2008). Climate 

and snowpack modeling studies have shown an anticipated decline in the California winter snowpack and across 

much of western North America (Siirila-Woodburn et al. 2021, Mote et al. 2018, Huning & AghaKouchak 2018), 

with periods of low-to-no snow winters likely emerging in California within 30 years (Siirila-Woodburn et al., 

2021). Therefore, water supply forecasts historically based on SWE observations are likely to experience increasing 

uncertainty. Specifically, the ability to forecast drought occurrence in mountain watersheds, a key decision-making 

factor for reservoir operations (Stillinger et al. 2021), is expected to decrease due to climate change impacts on the 

snowpack (Livneh & Badger 2020). 

 

 It is desirable to improve all components of the water supply forecasting system, namely data acquisition, 

modeling, and uncertainty quantification, to ameliorate the anticipated loss of forecast skill. Considerable effort has 

been invested in constraining the physical processes driving alpine hydrological responses. The NASA/JPL 

Airborne Snow Observatory (ASO) project, now Airborne Snow Observatories, Inc., improved the quantification of 

full-catchment SWE by combining snow depth maps acquired through airborne light detection and ranging (LiDAR) 

with physical snowpack modeling using iSnobal (Painter et al. 2016). Assimilation of ASO data into snow models 

resulted in large increases in model skill and suggested the potential for a new paradigm in water management for 

snowmelt-dominated basins (Hedrick et al. 2018), but the implementation of an ASO-based runoff forecasting 

paradigm requires the operationalization of hydrological models that can use this novel dataset. Nevertheless, ASO 

SWE maps influence operational decision-making: for example, an ASO acquisition indicating below-average 

snowpack in early 2021 was a key factor in the decision of reservoir managers to limit early season water releases. 

 

 In light of the availability of novel datasets and the anticipated impacts of climate change, it is important to 

investigate the physical processes and model assumptions that drive uncertainty in water supply forecasts. In this 

study, we analyzed uncertainty propagation through a set of statistical runoff models for the upper Tuolumne and 

Merced River basins, located on the west side of the central California Sierra Nevada mountain range. Flows from 

the upper Tuolumne River basin are measured at Hetch Hetchy Reservoir, which supplies water and power to the 

City of San Francisco, and the upper Merced River basin is gauged at the Happy Isles bridge. Both watersheds 

provide water to agricultural irrigation districts in California’s Central Valley, and both have a many-year timeseries 

of ASO SWE maps, with a combined total of 71 unique SWE maps between the months of January and June. 

Statistical water supply forecasts for the Tuolumne and Merced Rivers are provided by the California Nevada River 

Forecast Center (CNRFC), and forecasts are also run by multiple reservoir management groups using a variety of in-

house models (e.g., Graham 2018). We use a Bayesian statistical framework to evaluate the likely impacts of 

drought and climate change on the uncertainty of empirical runoff forecasts for this system across a range of model 

parameterizations. 

 

 Uncertainty in the water balance can arise in two distinct ways: when the magnitude of winter precipitation 

is large but the fraction remaining as SWE is small, or when the magnitude of winter precipitation is small 

regardless of the fraction remaining as SWE. In either case, forecasts become more uncertain when the absolute 

magnitude of the snowpack is small, and the contribution of spring precipitation has the potential to be a large driver 

of the spring water balance. This result is intuitive and well-established, but our findings present a new opportunity 

to separately quantify the contribution of different sources of uncertainty to total water supply forecast uncertainty 

across a range of SWE conditions. 

 

METHODS 

 

 To analyze forecast behaviors under a range of hydrologic and climatic conditions, we first built runoff 

models through which uncertainty could be propagated. The basic structure of most empirical water supply models 

consists of an expression relating discharge, Q, to precipitation, P, under the influence of one or more additional 

terms. We generalize this framework to: 

𝑄 = 𝑃 − 𝐿 

where L is a placeholder term representing the difference between precipitation and streamflow. The L term includes 

the lumped effects of evapotranspiration (ET), storage change (ΔS), groundwater fluxes (G), and any other water 
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cycles active within a catchment. To model cumulative water yield over an extended forecast period of several 

months, the terms Q, P, and L are further simplified from instantaneous rates to time-integrated volumes, or 

equivalently, area-normalized specific yields in units of water depth. We define the period of interest as the time 

interval from October 1 (the beginning of the water year) through July 31 (the end date of most water supply 

forecasts). In the Sierra Nevada, this time interval includes most of the snowpack accumulation and ablation seasons 

and typically encompasses the majority of yearly streamflow. We define a water balance on this time interval,  

 

𝐿𝑇𝑜𝑡𝑎𝑙 ≡ 𝑃𝑇𝑜𝑡𝑎𝑙 − 𝑄𝑇𝑜𝑡𝑎𝑙 

 

such that QTotal is the total water yield measured between October 1 and July 31, PTotal is the cumulative precipitation 

on the same time interval, and LTotal is defined as the difference between the former terms. The “loss function” LTotal 

has no explicit physical significance, but is a placeholder for the substitution of other terms representing all 

hydrological fluxes that are not directly measured. In different cases, the terms constituting LTotal may have the same 

or opposite sign. For instance, a reduction in multi-year storage during a drought could cause LTotal to be smaller 

than ET. We developed six models for LTotal to represent several distinct types of empirical runoff model 

parameterizations (Table 1). For each model, we estimate water balance inputs using the sum of ASO-measured 

SWE at the start of a given runoff period plus station-measured precipitation during each runoff period. 

 

 Model 1 treats LTotal as a constant, wherein the difference P-Q is the same each year. This model is assumed 

to approximate a closed water balance with negligible inter-year storage change and a constant ET demand that can 

be satisfied even during drought conditions. 

 

 Model 2 represents a constant runoff efficiency, wherein the ratio Q/P is constant. This model framework 

approximates a purely supply-limited closed system where ET increases in proportion to water availability. 

 

 Model 3 includes both a slope and intercept for the loss term, with the slope of LTotal solely dependent on 

the current year’s precipitation. The architecture of this model still assumes a water balance independent of any 

multi-year effects but allows ET impacts to vary between the endmember scenarios of Model 1 and Model 2. 

 

 Model 4 is the same as Model 3 but with the addition of a second slope term, this time predicated on the 

previous year’s total streamflow as a proxy for antecedent deficit or carryover effects. This framework implies an 

open water balance within any given year, since LTotal is recursively dependent on each prior year’s water balance. 

 

 Model 5 uses the same variable-loss terms as Model 3 but generalizes the functional shape to a logistic 

equation. This model’s sigmoid shape was chosen to simulate increasing ET in wetter conditions up to some 

asymptotically approached maximum as the landscape approaches saturation. Additionally, the logistic shape is 

sufficiently flexible that it is representative of the capabilities of simple nonlinear models in general. 

 

 Model 6 is also a logistic function with the addition of last year’s streamflow to be a proxy for antecedent 

conditions as in Model 4. As the most complex model, this structure was intended to capture more nuanced 

nonlinear behaviors in the framework of an open water balance, with the combined effects of ET and storage change 

depending on the balance of antecedent storage deficits or surpluses. 

 

Since water supply forecasts are typically made on multiple nested time intervals rather than for the entire 

October-July period, we develop equations to scale LTotal over smaller time windows. Runoff efficiency, R, 

 

𝑅 ≡
𝑄𝑇𝑜𝑡𝑎𝑙

𝑃𝑇𝑜𝑡𝑎𝑙
 

 

can be used to establish a relationship between precipitation and streamflow on shorter intervals if LTotal is assumed 

to scale uniformly across temporal subsets of the water balance. 
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Table 1.  Model equations used in this study. L denotes the difference between cumulative precipitation and runoff. 

Model 1: constant loss 𝐿1 = 𝑎 

Model 2: constant runoff efficiency 𝐿2 = 𝑎 ∗ 𝑃𝑇𝑜𝑡𝑎𝑙 

Model 3: linearly variable loss (closed water budget) 𝐿3 = 𝑎 + 𝑏 ∗ 𝑃𝑇𝑜𝑡𝑎𝑙 

Model 4: linearly variable loss (open water budget) 𝐿4 = 𝑎 + 𝑏 ∗ 𝑃𝑇𝑜𝑡𝑎𝑙 − 𝑐 ∗ 𝑄𝐿𝑎𝑠𝑡 𝑌𝑒𝑎𝑟 

Model 5: nonlinearly variable loss (closed water budget) 𝐿5 = 𝑎 +
𝑏

1 + 𝑒−𝑐∗(𝑃𝑇𝑜𝑡𝑎𝑙−𝑑)
 

Model 6: nonlinearly variable loss (open water budget) 𝐿6 = 𝑎 +
𝑏

1 + 𝑒−𝑐∗(𝑃𝑇𝑜𝑡𝑎𝑙−𝑑)−𝑓∗(𝑄𝐿𝑎𝑠𝑡 𝑌𝑒𝑎𝑟−𝑔)
 

 

While we acknowledge that the assumption of a constant intra-seasonal runoff efficiency, R, is untested 

over the early season accumulation period, we note that the ablation season time windows used for calibration and 

forecasting are comparable, and thus the effect of assuming a time-invariant water balance is minimized in our 

analysis. Given a constant value of R within a single year, we can calculate cumulative runoff during a given 

forecasting period as R times a water balance input, which consists of the complete ablation of the snowpack plus 

any precipitation falling during the spring forecast period, PSpring: 

 

𝑄 = 𝑅 ∗ (𝑆𝑊𝐸 + 𝑃𝑆𝑝𝑟𝑖𝑛𝑔) 

 

 We aggregate 50 m resolution ASO SWE maps (Painter et al. 2019) to average SWE depths over the 

watershed and calculate cumulative post-flight precipitation using the Tuolumne Meadows meteorological station 

(TUM) gauge (CDEC 2022). We use all ASO flights in the study basins between the months of January and June 

(inclusive), resulting in a dataset of 54 flights across 9 years (2013-2021) in the Tuolumne and 17 flights across 6 

years (2014-2015 and 2018-2021) in the Merced. TUM precipitation values are consistent with ASO basin-wide 

SWE accumulation values and the station is at a representative elevation and central location within the combined 

Tuolumne-Merced study area, so we use TUM data as direct estimate of post-flight P for both basins. Cumulative 

runoff is then calculated from the day of each ASO flight through the end of July. Since the goal of this project is to 

characterize variations in uncertainty between different years, we calibrate the runoff models such that we can 

expect random errors arising from imperfect model fit to approximate a constant fraction of each year’s water 

balance. With the effect of random error thus normalized between years, differences in relative uncertainty can be 

attributed to variations in the system. 

 

 A Bayesian modeling framework is ideal for quantifying and propagating uncertainty from random and 

systematic sources. A set of parameter samples from a Monte Carlo model fitting algorithm constitutes uncertainty 

in the mathematical shape of the model and quantifies uncertainty in the model’s response to systematic differences 

in inputs, and the standard deviation, σ, of the distribution from which each sample is drawn quantifies the effect of 

random process variability, accounting for uncertainty from hydrologic processes that might not be captured by any 

given model. We calibrate each model by optimizing the parameters of LTotal to produce a constant seasonal 

uncertainty σ * QTotal in each forecast period, expressed here in sampling notation: 

 

𝑄𝑇𝑜𝑡𝑎𝑙,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑄𝑇𝑜𝑡𝑎𝑙,𝑀𝑜𝑑𝑒𝑙𝑒𝑑 , 𝜎) 

 

 We use the No U-Turn Sampler (NUTS) implementation of Hamiltonian Monte Carlo in the Stan Bayesian 

package (Stan Development Team 2022) to obtain 2,000 parameter samples (not including warmup) for each of the 

six models. We use flat priors for all parameters except for logistic function parameters, for which we use diffuse 

normal priors to prevent numerical instability. Effective sample sizes and traceplots of parameter chains are 

consistent with convergence. 
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 With model calibration complete, we analyze model behaviors by calculating median values and 90% 

credible intervals for runoff (QTotal), loss (LTotal), and efficiency (R) for each model across the full range of observed 

PTotal. Additionally, we calculate median runoff values for each of the ASO flight-based calibration periods to 

compare measured and modeled values. 

 

 To analyze the runoff models in “forecast mode,” that is, only using information that would be available in 

real-time, we replaced measured values of PSpring with a distribution of likely values that could be propagated 

through the models to generate forecast runoff exceedance levels. The TUM precipitation record began in water year 

1986, so to obtain more than 36 seasonal precipitation samples, it was necessary to build a statistical model of spring 

precipitation. We calculate the total precipitation occurring from a given day of year through the end of the forecast 

period for each of the years of record, producing a sparse distribution of spring precipitation patterns. Since 

precipitation distributions are skewed high by rare large events, we calculate lognormal parameters of the mean 

(µSpring) and standard deviation (σSpring) of the distribution of precipitation occurring after a given date. Sampling 

from lognormal distributions of PSpring values allows us to iterate the runoff models over many post-forecast 

precipitation scenarios, thereby propagating uncertainty in PSpring into our final forecast exceedance levels. 

 

 To further generalize our forecast analysis, we repeat the same method to characterize lognormal 

distribution parameters µWinter and σWinter for cumulative precipitation between October 1 and the forecast date, 

giving a distribution of PWinter values. One sample each from the PWinter and PSpring distributions together define a 

unique seasonal precipitation scenario. Our statistical forecast models only predict runoff and do not have any 

internal snowpack modeling capabilities, and the amount of PWinter present as SWE on any given forecast date is 

variable, so the water balance input term SWE + PSpring is undetermined even with known values of PWinter and PSpring. 

To leverage this innate model flexibility, we defined the SWE fraction X, 

 

𝑋 ≡
𝑆𝑊𝐸

𝑃𝑊𝑖𝑛𝑡𝑒𝑟
 

 

which relates the amount of SWE remaining on the day of the forecast to the amount of precipitation up to the day 

of the forecast. By iterating model runs over a range of X values from 0 (no SWE) to 1 (all PWinter remaining as 

SWE), we are able to characterize model behaviors across a range of low- to high-SWE proportions within a given 

precipitation scenario. 

 

 To analyze the contribution of spread in the spring precipitation distribution to total forecast uncertainty, 

we run the runoff models in both “forecast mode” and “backcast mode” for the runoff periods used in model 

calibration. In contrast to forecast mode, which requires propagation of uncertainty in spring precipitation, a 

backcast uses only a single value of PSpring which, together with a single value of PWinter and a given value of the 

SWE fraction X, constitutes a unique sample of the model space. 

 

To generalize these results, we run forecast and backcast modes for synthetic scenarios consisting of 

precipitation values sampled from PSpring and PWinter. Given a particular model and a single value of X, generalized 

backcast distributions are created by iterating all 2,000 model parameter sets over 50 spring precipitation samples 

for each of 50 winter precipitation samples. This results in 2,500 unique backcast distributions, each containing 

2,000 samples representing uncertainty in a given hydrological model for a given precipitation scenario. Similarly, 

we create forecast distributions by iterating the model parameter sets over the same 2,500 winter-spring precipitation 

combinations representing unique “years,” albeit with an additional round of iteration over 50 new spring 

precipitation samples which are propagated through the model in place of the single PSpring value used by the 

backcast. Therefore, we obtain 2500 forecast distributions corresponding to the backcast distributions, but each 

forecast distribution contains 100,000 samples (2,000 parameter samples times 50 PSpring samples), thereby 

representing uncertainty in the simulated real-time forecast. For both backcast and forecast scenarios, models 

requiring last year’s streamflow as an input variable are given a one-year warm-up period under static precipitation 

conditions with an initial streamflow value representative of average conditions. 

 

 It is impossible to directly validate model results in randomly sampled scenarios since observed runoff 

values are not available across all possible conditions. However, since the propagation of random and systematic 

variability in the Bayesian framework can quantify uncertainty even outside the calibration range, the characteristics 
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of backcast and forecast distributions nevertheless illumine the uncertainty in their respective scenarios. We attained 

an estimate of expected forecast accuracy by finding the average relative deviation around the median: 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≡ ∑ (1 − [
|𝑄𝑖 − 𝑄𝑀𝑒𝑑𝑖𝑎𝑛|

𝑄𝑀𝑒𝑑𝑖𝑎𝑛

])
1

𝑛

𝑛

𝑖=1
 

 

 Here, QMedian is the median of either a backcast or forecast distribution and represents the central tendency 

of the model. The spread of the distribution around its median characterizes the uncertainty, with each sample Qi 

representing a single possible value that could be the “true” Q. Therefore, the term inside the square brackets 

represents the relative error between the constant modeled value, QMedian, and a particular possible true value, Qi. 

Subtracting the relative error from one yields expected accuracy. 

 

 The methods yield an “uncertainty function,” which quantifies the uncertainty in statistical runoff forecasts 

under arbitrary precipitation and SWE conditions. By way of example, we pick April 1 as a forecast date due to the 

prevalence of April through July water supply forecasts in operational environments. We then calculate the expected 

accuracy of backcast and forecast distributions for each model across a range of SWE fractions, X, from 0% to 

100% SWE remaining on April 1. Finally, we repeat these calculations excluding all but the driest 25% of PWinter and 

PSpring samples to simulate forecast uncertainty during drought years. 

 

RESULTS 

 

 Bayesian sampling of all six 

models for both the Tuolumne and 

Merced River basins yields a range of 

parameter values representing unique 

individual models. The median, 10th, and 

90th percentile runoff values are 

calculated for the range of SWE + P 

from 0.4 m to 1.5 m water depth 

equivalent, representative of the range of 

variation between drought and 

abnormally wet conditions observed over 

the calibration period of 2013-2021. 

Calculating R over this same range for 

both the median and the credible interval 

yields an estimate of runoff efficiency 

behaviors under various hydrological 

conditions. In both basins, all models 

indicate a nonlinear decay of runoff 

efficiency during drought conditions 

(Figure 1) with the exception of Model 2, 

where runoff efficiency is held constant by design. 

 

 We evaluate model performance by comparing measured and modeled values for the runoff periods 

associated with each ASO flight. Scatter plots of modeled and observed values (Figure 2) indicate minimal bias 

between high or low magnitudes since the individual points are typically distributed uniformly around the 1:1 line. 

The exception is again Model 2, which showed a strong bias to underpredicting runoff in wet years. This behavior 

can be attributed to the model’s constant runoff efficiency, which prevents it from capturing the increase in runoff 

efficiency associated with wetter conditions. 

Figure 1.  Modeled runoff efficiency behavior in Tuolumne Basin. 
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  We choose to focus on results pertaining to Model 6 for the present discussion since this model was the 

most successful at capturing observed variations between drought years. The two water years 2020 and 2021 were 

particularly useful test cases: the study area received 

approximately the same amount of precipitation (with 

spatiotemporally similar ASO SWE distributions) in 

both years, but 2020 followed an unusually wet year 

while 2021 was the second year of a sustained drought. 

As such, this pair of years is useful for testing the 

importance of antecedent storage or deficit effects. We 

observe that Model 6 (and to a lesser degree, Model 4) 

best capture the variation between these years, likely due 

to the inclusion of the previous year’s streamflow as a 

proxy for antecedent moisture conditions. 

 

 Running the models in forecast mode requires 

sampling from precipitation distributions. We observe 

similarity in the shapes of both PWinter and PSpring 

distributions with corresponding observed distributions 

over the past 36 years (Figure 3). We do not suggest that 

the precipitation distributions derived here should be 

used for operational forecasting; rather, these 

distributions are meant to illustrate the range of likely 

variations in pre- and post-forecast-date precipitation. In 

the operational environment, short-term and long-term 

meteorological forecasts are likely to supplement 

historical distributions to further constrain uncertainty in 

precipitation. 

 

 

 

Figure 4. Example distributions for a sample of drought years. Top row: forecast distributions including all 

quantified uncertainty sources. Second row: uncertainty in the mean forecast, propagating only precipitation 

variability and parameter uncertainty (no random error). Third row: backcast distributions using a measured 

value of PSpring but propagating all other uncertainty sources. Bottom row: uncertainty in the mean backcast, 

propagating only model parameter uncertainty. Red dots show observed values. 

Figure 3.  Comparison of measured and modeled 

pre- and post-forecast precipitation distributions for 

the April 1 forecast date. 

Figure 2.  Comparison of measured and modeled 

runoff values for Model 6. 
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 To test the ability of backcast and forecast models to capture observed runoff variability during drought 

conditions, we also generate post-forecast precipitation distributions for the day-of-year corresponding to a selection 

of three ASO flights selected from the drought years of 2015, 2020, and 2021. Histograms of the forecast and 

backcast distributions (Figure 4) for an ensemble of all six models indicate that the models successfully capture the 

measured value and illustrate the tightening of the distribution in backcast mode when the value of PSpring is known. 

In addition to the ensemble forecast and backcast distributions, we estimate ensemble distributions in forecast mode 

and backcast mode propagating only parameter uncertainty and neglecting the addition of random process 

variability, essentially modeling the uncertainty in the mean forecast and the mean backcast. We note that in forecast 

mode, the contribution of process variability is small compared with the large uncertainty introduced by propagating 

the spring precipitation distribution, while in backcast mode, substantial uncertainty is contributed by both random 

error and parameter uncertainty. 

 

 Generalizing our forecast and backcast analysis to sample from both PWinter and PSpring and sampling across 

the full range of X (from 0 to 100% SWE remaining), we observe that the hydrological uncertainty of Model 6, that 

is, the uncertainty remaining in the runoff model even when PSpring is known, increases from ± 10% (90% accuracy) 

to ± 20% (80% accuracy) as the SWE fraction decreases from 100% to 0%. When PSpring is sampled from the 

precipitation distribution in forecast mode, the overall uncertainty increases, and the reduction in accuracy under 

low-SWE conditions is substantially more pronounced. With 100% SWE remaining on April 1, the forecast model 

indicates ± 20% uncertainty, including the ± 10% contributed by uncertainty in the runoff model itself, suggesting 

that hydrological and meteorological uncertainty sources are equally important. However, with reduced SWE on 

April 1, the contribution of meteorological uncertainty increases nonlinearly, and in a hypothetical zero-SWE 

scenario, the total forecast uncertainty is greater than ± 60%. This indicates that meteorological uncertainty is about 

twice as important as hydrological uncertainty in this extreme, but not impossible in the 21st century, scenario. 

 

 We observe a similar pattern of increasing runoff uncertainty under reduced-SWE conditions when we 

repeat the analysis using only the 25% driest precipitation scenarios. Hydrological uncertainty increases slightly, but 

the most notable change is the increase in total forecast uncertainty at the high-SWE end when considering only 

drought scenarios. Our results indicate that expected forecast accuracy decreases by ~10-15% during droughts even 

when most winter precipitation remains as SWE on the forecast date. 

 

DISCUSSION AND CONCLUSION 

 

 Of the six tested models, those that include a constant or near-constant loss term perform significantly 

better at capturing observed variations compared with the constant runoff efficiency model, consistent with Hedrick 

et al. (2020), who found that evapotranspiration losses are relatively constant in the Tuolumne across a sample of 

dry, average, and wet years. The decoupling of plant water consumption from precipitation variability has been 

observed in other regions of California (Hahm et al. 2019), and we suggest that our similar finding in the Tuolumne 

and Merced watersheds could be indicative of drought-limited ecosystem adaptation, which results in relatively 

constant water loss across a wide range of wet and dry conditions. Our results indicate the relationship between 

precipitation and runoff in the upper Tuolumne and Merced Basins is better modeled as a constant or nearly constant 

difference than as a constant or nearly constant ratio. 

 

 With regard to the propagation of hydrological and meteorological uncertainties through runoff forecasts, 

we observe the expected result that runoff forecasts experience greater uncertainty when the seasonal water balance 

is poorly constrained. In particular, we draw attention to the comparison of forecast uncertainty between all sampled 

precipitation scenarios (Figure 5a) and the subset of drought scenarios (Figure 5b). The average forecast uncertainty 

in a drought year with 100% of winter precipitation remaining as SWE on April 1 is comparable to the expected 

forecast uncertainty for all precipitation conditions when only 30% of winter precipitation remains as SWE. We 

suggest that the behavior of forecast uncertainty during droughts is an analogue for the behavior of forecast 

uncertainty in a reduced-SWE climate. 

 

 Our results support the findings of Livneh and Badger (2020) by quantifying increased forecast uncertainty 

in reduced-SWE conditions at the watershed scale. Moreover, we argue that high water supply uncertainty during 

current droughts foreshadows high uncertainty in future low-SWE climate scenarios. Climate change is likely to 

exacerbate the challenges associated with adequately modeling runoff uncertainty. We suggest that the development 
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of forecasting approaches that rigorously quantify and hopefully reduce uncertainty in out-of-sample conditions 

should be an area of future investigation. 
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