Analyzing the Impact of Climate Change on Monthly River Flows in California's Sierra Nevada and Southern Cascade Mountain Ranges

TitleAnalyzing the Impact of Climate Change on Monthly River Flows in California's Sierra Nevada and Southern Cascade Mountain Ranges
Publication TypeConference Proceedings
Year of Conference2012
AuthorsFreeman, Gary J.
Conference Name80th Annual Western Snow Conference
Series TitleProceedings of the Western Snow Conference
Date Published2012
Conference LocationAnchorage, Alaska
Keywordsclimate change, hydroelectric, orographic, subbasin, unimpaired flow

The impact of climate change on monthly river flows in California's Sierra Nevada and southern Cascade Mountain Ranges and its potential to impact hydroelectric production was analyzed to determine changes that have taken place in two successive 35-year periods during the past 70 years. Unimpaired monthly flows from both California's Department of Water Resources' (CDWR) Data Exchange Center's (CDEC) files and from Pacific Gas and Electric Company's (PG&E) operational subbasin runoff forecasting files for the Feather River were analyzed for comparison of the two periods. A notable change was the shift of snowmelt runoff from the April through July period into the month of March. March flows were larger for the more recent 35-year period for all of the flow points analyzed in the Sierra and southern Cascades including two subbasins on the upper North Fork Feather River where rain shadowed climate change impact has significantly reduced both snowmelt and water year runoff in the more recent 35-year period. The increase in March runoff appears to be a combination of mostly earlier snowmelt due to warming temperatures and from an increase in proportion of March precipitation that now occurs as rainfall. In northern California both the shift of snowmelt into March and the reduction of snowpack overall has resulted in reduced late spring and summer flows during the months of April through June. Subbasins south of the Yuba River have for the most part increased overall snowmelt runoff for the March 1 through July 31 period, while subbasins from the Yuba River north have remained either equal or declined in snowmelt runoff in recent years. Both increased elevation and orographic cooling seem to be critical for delaying the impacts of climate change on affecting spring and early summer runoff. For a rain-shadowed subbasin such as Lake Almanor, the recent 35-year period shows a 22% decline in the April through July runoff caused primarily from a combination of: 1) earlier snowmelt, 2) increased proportion of precipitation occurring as rainfall in recent years with less snowfall overall, and 3) reduced aquifer outflow from springs. (KEYWORDS: climate change, subbasin, unimpaired flow, orographic, hydroelectric)