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AS A TOOL IN WATER SUPPLY FORECASTING 1/
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Water supply forecasters ssek to predict the ampunt of water that will bscoms
available at futurs dates,

In Washington, a major source of the water supply is precipitation in mountain
areas, This supply is tapped at points on the major rivers (Columbia and tributaries)
often far removed from the mpuntain scurce., Much of the supply forscasting is based on the
premise that a large part of the summer flow of the major river system originates from the
winter prscipitation in the mountains., Sinca this spource, wintertims precipitation in the
mountains, can be sstimated from a varisty of measursments, it is used to predict the
summer water supply.

Types of measursments of precipitation (inches of rainfall) are total precipita-
tion (recorded st ssveral locations in the drainags basin), seasonal prascipitation (spring,
fall, winter), breakdown of precipitation by slsvation or temperaturs zone, and snow water
aquivalent,

Streamflow records accumulated during the summer months provide measurements of
actual summer water supply in past ysars, From thess rscords, a mathematical rslation can
be sstablished betwsen measurements of winter mountain precipitation and summer water
supply. Once established, this equation might be ussed to predict the summer water supply
gach year when the winter precipitation records ars available, In the past, such equations
have been bassd on multiple regression analyses of the original measurements., This paper
presents a method that includes weighted values of all the independsnt variables--a
regression on principal components,

in principal component analysis, the major effects in ths system of indspendent
measurements are summarized to form a smaller set of artificial variables or principal
components (P,.C.%s). These components are weightsd summations of ths indepsndent variables,
The first principal component 1s the weighted sum of the independents that will explain
the maximum possible ampunt of variation among the independents, The second principal come
ponent explains the largest percent of the remaining variation, after the effect of ths
first componsnt has bsen removed, Principal componsnts ars thersfors calculated in desceéend-
ing order of importance, and each is orthogeonal, i.8., completely indspendent of the
othars,

The development of the prediction equation by means of ragrsssion on principal
components may be illusteated by the following example in two dimensiens ( enly 2 indspsnd-
ents). From xq and x2 @ varisnce-covariance matrix is calculated (for method, see Appendix).
The wesighted sum of x4 and xp that can explain the maximum amount of variation in this
matrix is the first P.C. The remaining variatien is explained by the second P,C.
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The next step in dsvsloping this forecast system is to regress the depsndent
variable on the principal component scorss,

For our example the dependent values and the regressicn on the first principal
component follows
Dbservation Dependent
numbsx variable
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Calculating the regression on the first principal component, we get
¥ = =1.133 + 8,369 1st B,C.

Rewriting ths equation in the form of the original indspendents, we gst the
equation ~
y = «1.133 + .368x1 + 1,381x2
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Now let us apply this methad to the water supply in the Yakima River at Cle Elum
and Kettle River at Laurier. Local weathsr variablas ars represented by total precipitation
at each weather station within the respective river basins and are recorded for each of
thres seasons--fall, winter, and spring. Snow survey data are in inches of water equiva-
lent, recorded on the April 1 survey. For the Kettle River there wers five weather stations
and four snow survey locations. For the Yakima River thers were four weather stations and
five snow survey locations., The totel number of independent variables measured each ysar
is therefore 19 (3X5 +4) for the Kettle and 17 (3X4 +5) for the Yakima. Data were avail-
able for the 21 consscutive years; 1945-1965;, on the Yakima, and theses years were ussd in
calculating the prediction equation.

The Kettle data could be summarized well by the first 10 principal components,
which explained more than 99 percent of total variance among the independents, We used all
17 principal components in the regression analysie of the Yakima River data. Complete
analysis of Yakima River data is given in the Appendix,

The following regression equations were computed on the principal components, and
nonsignificant coefficients weras sst equal to zero, Ths corresponding models for regression
on the unaltered independent variables ars prssented for comparison.,

KETTLE

Regression on principal components

RZ = ,869 5.E. = 143,08 d.f. =21

Constant = =887,23

principal component Coefficient
1 =19.9534
2 . =63, 2391
3 =73,1850
4 =-27,7285
6 -56,0534
10 81.1782

(NDTE: Coefficient times component weight will determine influence of an
of an independent obsarvation, Many of the component weights for the Kettle
wers negativs, )

Regressiaon on indspendents

R = 849 S.E. = 153,02 d.f. = 22

Constant = «=556,83

Independent variable Cosfficient
2 ' 70.9710
10 107,0263
15 176,7225
16 57,5350
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THIKEMS

Reargsalon on orincisal comoonents

72 = G960 §,E, = G2,70 4. F, = 15
N

Constant = 226,72

Principal component Coelficisnt

1 58801

(3™

2o 3157

423

4,9418
a 16,7343
13 84,5650

Regression on independents

RZ = ,969 S.E, = 46,90 dofs = 45

Canstant = «115,64

Independent variable Coefficient
1 11,2837
8 8,0651
12 : 38,2812
13 6,7312
14 6.3192

Estimates made from this Torecast squation for the years 1545-1955 sre given in
Figure 2 (Appendix).

Why use regression on primcipal componsnte?

Usually there is correlation amsrng the indepsndesnt variables. High correlation
amoeng the indepsndent variables would result in computation srrors or singular matrix if
regression on these variables is attemptsed. Thesa problems cen be sliminsted either by
excluding from the moedel terms that are highly corrslated among thewmsslves or by taking
principal components of the original variablsse, Compubting regression on thess components
does not present the problem of intercorrelation because the componants are orihegonal,
fach componsnt conbtains some wsighted sffect of each of Lhe independents; therefars none
of the informetion is excluded completely prier to regrassion calculations,

from the comparison of rsgressisn on principal components and rsgression on the
independents dirasctly, small diffsrences in prscisisn (standard srrors) can be found, The
sguations from regressions egn the indspendents directly contain cnly cone snow course varies
able for the Kettle and snly one for the Yekima., Water supply predictions would thus de-
pand on anly ocne snow courss for the information on snow contribution to water supply. The
sguations from regressions on principal cempensnts conbtain wsighted effect of all snow
course measurements, :

Principal componsnte should be computed on variables of the same szcale or of 2

common scals, sincs the measurement of any ons variable onm & sosels diffarvent From the
others would affect the weights assigned in the caleulatien of P,C.%s.
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Suppose that an inch of snow-water equivalent is not the same as an inch of pre-
cipitation; then we would have two differeni scales of moisture measurement, To aveid any
effect on the weighting, indeperndent variables could be tresated as two separate groups:
snow course measurements and precipitation records.

To illustrate, the Kettle data wers so divided, and principal components wers cal-
culated for each. Regression analysis was then computed on the resulting two sets of P.C.
scores. Nonsignificant coefficients of ths regression were set to zers, (Tha faollowing
equation is only an example of a way to handls differences in scale; it is not meant to
replace the previous Kettle equation,)

KETTLE

RZ = ,794 S.E. = 183,01 d.f. = 21
Constant = =680,40
Principal component Coefficient
Snow course 1 . 34615245%101
Precipitation 1 .15484914%10~16

2 ~,10026301x10"15

4 , . 245596941016

6 -.53816315x1077

To facilitate use of regression on principal components, the computer program
(p comp) used is available from the authors,

Water supply forscasters need an analytical method to calculate water supply pre-
diction equations. Regression on principal components will generate prediction equations
superior to thoss generated by regression directly on independents. The improvement is
achisved by including more information from ths set of independent variables and by weight=-
ing this information before regression. Fewer degress of freedom are removed when ths
regression is calculated., The resulting equation is more stable, for it is dspendent on
all the indspendent variables, not on a small subset of them,

APPENDIX
Details of Analysis of Yakima

The principal components are calculated from the matrix of independent variables,
In particular, the varianca=-covariance matrix of independsnt variables is rotated into a
set of n vectors,; n being the rank of the matrix., These are the latent vecters, which are
orthogonals and together they account for all the variation found among the indepandent
variables, These vectors are arranged in order of the amount of total variation that they
explain, their latent root. The largest percent of the total variation is accounted for
by the first root and vector,.

Runoff can be regressed on thess vectors starting with the largest. Dnly one
degree of freedom is associated with each vector., fach vector contains components (weight=
ad scores) of all the original indspendent variables. The model for prediction of runeff
is then derived in two steps.
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First, variance-covariance matrix is computed from the original independent
variables, namely, prescipitation and snow water equivalent,

Xop = X'npxpn e

In the matrix element,; X5, n is the number of original variables and p is the
number of sbservation sets, This matrix X is therefore of rank n, for n<£p,

2
Exampls: Data, first asbssrvation set (j=l) the x i1 (1L = 152500.n) would be

1.92 Fall precipitation Sta, 1
26,41 Winter precipitation Sta. 1

70.6 Snow water squivalent, April 1, Cayuse Pass

The principal component analysis will caleculate a matrix U to transform the
matrix X into an orthegonal matrix Z,

- €
Inp = U nnxnn °

The individual Zij's are the P,C. scores. The vectors in Z (Z,i) are not only orthogenal
but are so arranged that Z,1 has the maximum variance of all columns in Z, Here 7 2 is
chosen such that its varisnce is larger than all other columns except Z,j. The magrix is

therefore composed of orthogonal vectors arranged in descending order of size of variances,

The vectors in U which define each of the vecters in Z are the latent vectors of

the matrix Xpne

Examples The largest root of the Yakima data would be used to calculate a new
variable Zi5¢

21 ,1 = U'l,nxl,n‘:
96,30 = ,005653(1.92) + .1915(26.41)...+ .6250(70,6).

The Z%'s are used as independent variables in a regression analysis on runoff data,

YAKIMA
Regression model for runoff

on principal components of precipitation and snow water squivalsnt

Standard errar of regression 52,70
Coefficient of dstermination .9598
Constant : 288,72
Principal Component Coefficient
1 5.8901
2 =2, 3157
3 4,9418
8 ~16,7343
13 84,5690

The above model is in terms of the Z's, To put this equation4in terms of the
original variables, x's; further computations are necessary.
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A K
Yi= & BZiis Ipg = U'kiXkis

~ k k jal,n
Yi= 5 B (u'ky %eids = LBk B ulpy xij o

for k = 1,2,3’8,133

The model could then bes wtitten in terms of x's,
A j-l #N Kk

Yi= 5 xij £ Bk ukj e
k
Let Aj = Z:Bkuﬁkj N
A 3=l,n

= 5B u’py = 5.,8901 (,005653)
-2.3157 (.01848)

4,9418 (-,06853)

«16,7434 (=,03523)

84,5690 (.07294);

A1 = 6,4099,
" j 1,"
Therefore Yj = B + X if jis equavalent te the model of ths regression on
principal components but is expresseé in terms of the original variables, x's,

For the Yakima data the model in terms of A's has been calculated as follows:

228,72 A(D) = 8(0), constant term
6.4099 A(1)s Fall precipitation, Sta. 1
4,9076 A(2), Winter " "
~14,9383 A(3), Spring " "
«9913 A(4), Fall precipitation, Sta, 2
16,7492 A(5)s winter " "
=44, 4634 A(6)s Spring " "
-8,0534 A{7)s Fall precipitation, Sta. 3
7.3731 A(8), Winter "
-2,6743 A(9), Spring " "
. 0407 A(10), Fall precipitation, Sta. 4
-16,3964 A(11), Winter u
64,8995 a(12), Spring " "
5,6907 A(13) Tunnel Avenue Snow water April 1
3,6242 A(14) 0lallie Meadow " " "
15,0851 A(15) Big Boulder Cr. " " u
-8.2901 A(16) Fish Lake now "
. 7832 A(17) Cayuse Pass " " "

Prediction of water supply can now be made for all past observations using the
A's, This could have been done from the relationship Y = BU'X, but since predictions fer
the future can be handled most easily from the equation Y = AX, these predicticns will be
made this way also.,

Example: Runoff for 1945 predicted by equation
Fa)
Y = 228,72 + 6.,4099(1.92) + 4,9076(26,41) - 14,9383(4,07)
.9912(1.44) +16,74582(21.54) 44,4634(2,80)
8,0534(2,66) + 7.3731(31,08) 2,6743(5.27)
.0407(3,27) «16,3964(35.4) + 64,8995(6,34)
5,6907(16.8) + 3.6242(35.4) + 15.0851(12.6)
8,2901(23,2) + ,7832(70.6)

EX

I+ + 8

A
Y = 738,41, gctual runoff was 714.55,
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Figurs 2,

Dbserved runoff and predicted runoff are plotted (figure 2) for 19451965, the
years used in calculating the squation,
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