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A WATERSHED INFORMATION SYSTEM1 8

by

A, G, Thomsen and W. D. Striffler2

INTRODUCTION

The simulation of snowmelt runoff from high mountain and wind-swept watersheds has
presented the modeler with a number of serious problems which tend to limit the reliabil-
ity of hig results. Problems facing the modeler include (1) a lack of basic data to drive
the model including precipitation imputs and solar radiation or air temperatures for snow-
melt simulation, (2) a lack of information on the spatial and temporal variation of the
climatic driving variables, the hydrologic operating parameters, and the resulting hydro-
logic processes, and (3) a general difficulty in taking advantage of late season data to
modify or update the simulation rum.

General approaches to these problems have included use of index snow courses or
climatic stations to develop statistical relationships, development of Jlumped simulation
models which assume uniform input and snowmelt processes over the watershed, and
assumption of uniform temperature and precipitation change rates with elevation.

Imagery from Landsat and lower resolution environmental satellites have been used by
others for updating snow cover simulation. The snow covered area within a watershed is
first found from manual or machine aided interpretation of satellite imagery. Areal
snow cover is then directly input to the simulation model (Dillard and Orwig, 1979) or
used in estimating the water equivalent of snowpack {Shafer and Leaf, 1979).

This paper presents a watershed information system which includes a basic data
framework of digital terrain overlays, a water balance simulation model which utilizes
a spatial data format to drive the snowmelt simulation and a lateral flow model which
routes snowmelt through the soil profile to the nearest channel.

In addition to a snowmelt hydrograph, the information system generates a series of
snow cover and snowpack-water content maps. These can be compared to Landsat imagery
or other snow cover data (snow course measurements, aerial photography) to provide an
update capability to the simulation. The update capability has the potential for sim~
ulating snowmelt runoff where snow is relocated due to wind action.

SYSTEM DESCRIPTION

The watershed information system consists of a series of computer programs or mod-
ules designed to sequentially accomplish the various tasks and options of the system.
These tasks include: (1) creation of digital terrain overlays from spatial watershed
data; (2) automatic generatiom of parameter decks for model operation; (3) simulation
of snow accumulation and melt; (4) simulation of spring snowmelt hydrographs;

(5) classification of snow cover on Landsat imagery; and (6) simulation update using
remotely sensed and/or conventional snow-cover information.

Creation of Watershed Overlays

Spatial simulation of watershed hydrology requires a basic framework of digital map
data. This is obtained by digitizing existing maps or imagery. In this application maps
are divided into square grid-cells 5.76 ha. in size, This corresponds to a 1lxl cm square
on a USGS 1:24,000 quadrangle. Each grid cell is assigned an X-Y ccordinate identifica-
tion. Map data digitized imcludes topography (slope, aspect, elevation), vegetation

lPresented at the 48th Western Snow Conference, Laramie, Wyoming, 15-17 April 1980.

2Department of Earth Resources, Colorado State University, Fort Collins, Colorado 80523.
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(type, density) and soils (type). 1If soils characteristics are known additional overlays
(field capacity, wilting point, soil moisture content) can be generated from the soils
type overlay. Digital map data can be displayed in a gray-mapped form for visual inter-
pretation (Figure 1}.

Creation of Parameter Deck for Model Operation

Parameter decks for operating simulation models of snow processes (and hydrograph
generation) arve created automatically from watershed information in overlays. In order
to reduce simulation time grid cells similar with respect to aspect, slope and vegetation
type were lumped together to form larger hydrologic response units (HRU's). Soil water
parameters within HRU's and elevation are calculated as the mean of individual grid-cell
values {Table 1).

The information given in Table 1 is used in generating the parameter deck for oper-
ating a water balance model WATBAL. The computer program that generates the parameter
deck has built-in calibration options for fast model calibration and options for the
simulation of the effects of timber harvesting.

Spatial Simulation of Snmow Processes

The snow process simulation model, WATBAL, is a modified version of a model devel-
oped by Leaf and Brink, 1973, WATBAL simulates watershed response to climatic input
on a daily time step. Required driving variables are the daily maximum and minimum
air temperatures and precipitation.

Linkage between WATBAL and other subprograms is established by a permanent file
with the daily observed and simulated parameters for each HRU. All simulated para-
meters (snow-water equivalent, snow temperature and soil moisture deficit) can also be
digplayed in gray-mapped form for any date between April 1 and July 31 (Figures 2 and
3). Line printer generated gray maps are scaled to overlay a watershed base map at
approximate scale of 1:75,000.

Hydrograph Generation from Spatially Distributed Input

WATBAL does not simulate stream hydrographs, No routing is performed and soil water
in excess of field capacity is assumed to run off instantly.

In order to compare a simulated hydrograph with the observed hydrograph a lateral
flow model was developed to route water from simulated snowmelt and input in the form of
rain through soil and groundwater storages to the channel system. The model-based on
variable source area concepts— simulates overland flow and baseflow comtributions to
the snowmelt hydrograph as well as the dominant lateral flow component. Lateral flow
and deep seepage is simulated within variable length slope segments (compartments).

Clagsification of Snow in Landéat Imagery

4 snow classifier for classifying the fractional snow-covered area within Landsat
pixels was developed. Before classification, the Landsat imagery is preprocessed in
order to eliminate image distortion, comvert data to the base grid cell format and over-
lay data on north-oriented overlays with watershed information. Accurate image regis-
tration is ensured by automatic registration of the Landsat scene with a synthetic image
of Landsat Band 5 calculated from topographic and vegetation information in watershed
overiays, spectral characteristics of vegetation classes and solar position (Figure 4).

The snow classifier relies omn change detection between a synthetic snow-free image
and a real Landsat Band 5 image. Fractional snow cover is classified according to the
radiance difference between the two images (Figures 5 and 6).

Since the synthetic image is created from models of topography and vegetation, the
radiance difference is assumed due to snow cover only. Before final classification the
radiance difference is normalized for the effects of topography, image acquisition
data and moderate canopy density.
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Gray Map Showing the Distribution of Elevations Within the Williams Fork
Watershed (Range 8,500 to 12,500). i

" Figure 1,



Table 1. Output from Program EXTRACT Showing Defined Hydrologic Response
Units and Parameters Calculated for Units '

Watershed Parameters for Watershed(s) 300
Summary for Elevation Zone 7500-13500 feet

Sub- Veg. Veg. Field Soil Moist. Wilt., Fract. Mean

Class . Aspect Slope Type Dens. Cap. Level Point Area Elev.
o011 0 1 1 0 4.6 0.0 1.5 .016 11571
014 0 1 4 75 4.6 0.0 1.5 .007 9516
015 0 1 5 39 5.1 0.0 1.5 .013 10742
021 0 2 1 0 4.6 6.0 1.5 031 11429
024 0 2 4 75 4.6 0.0 1.5 .003 10787
025 0 2 5 38 5.1 0.0 1.6 .029 10841
031 0 3 1 0 4.6 0.0 1.5 .016 11389
035 0 3 5 40 5.1 0.0 1.6 .006 10857
041 0 4 1 0 4.6 0.0 1.5 002 11140
111 1 1 1 0 4.6 0.0 1.5 .047 11500
114 1 1 4 75 4.6 0.0 1.5 .017 10310
115 1 1 5 56 5.3 0.0 1.7 011 10923
121 1 2 1 0 4.6 0.0 1.5 .050 11242
124 1 2 4 73 4.6 0.0 1.5 .035 10231
125 1 2 5 54 5.3 0.0 1.7 .025 10718
13 1 3 1 0 4.6 0.0 1.5 .021 11356
134 1 3 4 64 4.6 0.0 1.5 .012 10167
135 1 3 5 60 5.3 0.0 1.7 .003 10220
141 1 4 1 0 4.6 0.0 1.5 .003 11330
144 1 4 4 75 4.6 0.0 1.5 .003 10065
211 2 1 1 0 4.6 0.0 1.5 015 11519
214 2 1 4 .73 4.6 0.0 1.5 .009 9963
M 7 1 1 0 4.6 0.0 1.6 .012 11865
714 7 L 4 75 4.6 0.0 1.6 .007 9671
715 7 1 5 22 4.8 0.0 1.6 .008 10837
721 7 2 1 0 4.6 0.0 1.6 .036 11555
724 7 2 4 75 4.6 0.0 1.5 .005 10099
725 7 2 5 3 5.0 0.0 1.6 .016 10795
731 7 3 1 0 4.6 0.0 - 1.5 .028 11581
734 7 3 4 75 4.6 0.0 1.5 .004 10622
735 7 3 5 35 4,7 0.0 1.5 .010 10211
741 7 4 1 0 4.6 0.0 1.5 .007 11575
751 7 5 1 0 4.6 0.0 1.5 .001 11800

Total number of cells = 1216
- Number of Hydrologic Subunits = 85
Sum of Fractional Areas = 1.000
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Simulation Update Using Snow-Course Measurements

Simulated relationships between elevation, aspect and snow-water content for a
given date were used in relating snow-course measurements to areal distribution of snow-
water content (Figures 7 and 8). It is seen that the effect of aspect on snow depth is
less pronounced on April 1 (Figure 7) than it is on May 1 (Figure 8).

Measurements from four snow courses within or near the study areal were combined to
form an index of observed water content. . Factors relating calculated snmow indices and
the curves of water content (Figures 7 and 8) are used for predicting the water content
at any point in the watershed from an index of snow course measurements.

The predicted water content is used in updating the simulated water content on the
date of the snow course measurements. Figures 9 and 10 show the effect of updating a
simulation of wateryear 1971, with snow course data on May 1.

Simulation Update Using Classified Landsat Imagery

Snow in Landsat imagery was first classified into percentage snow cover clagses as
previously described. Relationships between fractional snow cover and water content of
snowpack had to be assumed (Figure 11), because suitable Landsat images were not avail-
able during the middle of the snowmelt season. Furthermore, the functional relation-
ship between snow cover and water content is likely to vary with topography, time of
year and past history of snowpack.

For the update runs included here a particular snow cover/snow depth curve from the
family of curves shown in Figure 11 was selected by comparing gray-maps of the classi-
fied Landsat image and the simulated water content. During the later snowmelt season
the selection can be further improved by considering the effect of recent storms on
snow depth.

After a snow cover/snow depth curve has been selected update is performed as pre~
viously discussed. Tables 2 gives the comparative results from using snow course meas-
urements and Landsat imagery for simulation update.

Table 2. Comparative Results from Using Snow Cover Measurements and Classified Landsat
Imagery for Simulation Update. Date of Update: May 1, 1976.

Simulated Rumoff

(Inches)
1. ©No update (or recalibration) 13.93
2. Update with index of snow course measurements 13.67
3. TUpdate with Landsat Imagery using Curve 2 in Figure 8 13.15
4, VUpdate with Landsat Imagery Using Curve 3 in Figure 8 12.79
5. Recorded runoff for wateryear 1976 13.11 dinches

SUMMARY

The spatially distributed approach to the simulation of snow processes offers
possibilities of direct simulation update on pixel basis if periodical remotely sensed
(or other form of) snowpack information is available in overlay form or as point
measurements.

1Upper half of the Williams Fork Watershed, Williams Fork is a tributary to the
Colorado River at Parshall, Colorado.
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f‘igure 7. Simulated Smow Water Contents by Aspect and Elevation,
April 1, 1971. Snow Cover Index = 18.45.
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Figure 8. Simulated Snow Water Contents by Aspect and Elevation,
May 1, 1971. Snow Cover Index = 19.00.
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Simulated Updated on May 1, 1971.
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Snow water content measurements obtained in April during the late snow accumulation
vhase and Landsat imagery acquired during the later part of the snow-melt season have
the greatest potential for improving the prediction of spring rumoff from high mountain
watersheds.

Besides Landsat imagery, lower resolution iImagery from environmental satellites
that provide repeated coverage of large areas on a daily basis can be used for simulation
update. The lower resolution satellites have the greatest potential for monitoring snow-
pack in prairie environmments.

A potential application is the incorporation of snow transport models for improved
simulation of alpine and prairie conditions using the same data base (watershed overlays).
The incorporation of wind transport models would reduce the importance of performing
simulation update with statellite imagery by accounting for snow relocatiom.
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