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INTRODUCTION

The use of conceptual hydrologic models for short-term snowmelt/rainfall runoff
forecasting (several hours to several days in advance) has a number of drawbacks including
large computer storage requirements, difficulty in including real-time measured data in the
forecast, and overparameterization (more model parameters than can be justified given the
available data). A simpler conceptual model, the '"Snowmelt Runoff Model" (SRM) developed by
Martinec and Rango (Martinec, 1960; Rango and Martinec, 1979) has been shown to give good
results on a pumber of basins of varying size (Rango, 1983). Difficulties associated with
the use of the SRM include the following: parameter estimation, determination of the model
form (number of previous runoff and snowmelt/ppt terms to include), use of real-time infor-
mation to update the model, and difficulty in obtaining satellite imagery for snow-covered
areas.

In this paper, a class of stochastic, time-series models referred to as ARMAX (Auto
Regressive-Moving Average with Exogenous Inputs) or transfer function models (Box and
Jenkins, 1970) are presented. It is shown that the Snowmelt Runoff Model can be viewed as a
particular case within this general class of lipnear stochastic models. This offers a number
of advantages. (1) Analytical techniques are available for adapting the model format to
basins of varying characteristics and to varying time frames (daily, hourly, etc.). (2) &
number of efficient parameter estimation techniques are available. {(3) Confidence limits
describing the accuracy of the forecast can be included with the forecast. (4) Diagnostic
checks are available to determine if the model is performing properly. (5) Previous fore-
cast errors can be included in the model to improve future forecasts. (6) The model can be
cast in "systems format" and the Kalman filter can be used to update the parameters or
status of the model in real time.

MODEL FORMULATION

The general univariate ARMAX model for river flow (adapted from Box and Jenkins, 1970)
can be expressed as:
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where Q = streamflow
I = "moisture input" (combined snowmelt/rainfall) at time t-j

£ = white noise process
P,q,r = number of previous river flow, input and noise terms included in the model
¢,w,8 = model parameters to be estimated

t = time sequence

Next, consider the Snowmelt Runoff Model equation in its commonly used form:

3 _ CL
= ieni, i iyaifqe
Q = QK * iflct[{at(Tt T,)S; + P{}A ](1 K,) (2)

Presented at the Western Snow Conference 1985
lpepartment of Civil Engineering, Colorado State University,
Fort Collins, Colorado 80523

~127~



where: Q = streamflow St = snow~covered area
Ct = runoff coefficient Pt = precipitation
a, = degree day factor A = watershed area
Tt = air temperature Kt = recession coefficjent
Tb = base temperature i = elevation zone

It can be seen that the forecast of flow at the next time step is a function of the flow at
the current time step and effective snowmelt/rainfall during the next time step. If we
denote this combined snowmelt/rainfall input from all elevation zones as I_, let w, equal
the product of Ct and (1~Kt) and call the recession coefficient ¢1, éqn. (2) beécomes:

Q = 0 Qg ¥ Ip ()
where
3 , , . . . .
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Equation (3) can be seen to represent a special case of eqn. (1), without the inclusion
of a noise term. In adapting the SRM to a relatively large basin in Colorado (3419 km2),
Shafer et al. (1982) also included the snowmelt/rainfall input £from the previous day,
resulting in a model of the form

Q=03 Qg twp I vwy I, (5)

Again, this can be seen toc be a special case of eqn. (1) with p = 1, ¢ = 1, and no noise
term.

The advantages of using the ARMAX formulation of eqmn. (1) will be addressed in the
following sections.

DESCRIPTION OF STUDY AREA AND DATA?

The ARMAX model described by egn. (1) was used to forecast daily streamflows in the
headwaters of the Rio Grande River in southern Colorado. The riverflow forecast peint was
at the Del Norte, Colorado gaging station. Drainage area above this point is 3419 km?
(1320 mi%), with elevations ranging from 2432 m (7980 ft) to 4215 m (13,830 ft). Riverflow
behavior is dominated by snowpack accumulation and melt, resulting in a low-flow (snowpack
accumulation) period between September and April and a high-flow (snowpack melting) period
which begins in early April and persists through the summer. This basin was selected
because extensive modeling with the SRM has already been conducted on the basin (Shafer et
al., 1982), allowing use of identical data for model comparison and evaluation.

Daily precipitation, streamflow, average daily temperature and snow-covered area data
for the period 1973 to 1980 were used in the forecasting evaluation. Only the peak flow
period (April to September) in each year was examined. The precipitation, temperature and
snow~covered area were used to calculate the moisture input, I_, for each of three elevation
zones using the SRM approach shown in eqn. (4). These zonal moisture inputs were then
combined to represent a single basin moisture input, I, for use in egn. (1). Although the
SRM approach to snmowmelt was used in this study to facdilitate model comparison, any avail-
able snowmelt/precipitation model could be used to calculate the input term in egn. (1).

1A complete basin description and listing of streamflow and climate data
are available in the report by Shafer et al. (1982).
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MODEL ESTIMATION

i. Model Format

The first step in estimation is to determine the model order (the values of p, q, and
r) in eqn. (1). This can be done empirically, analytically or using a combination of both.
Empirical identification is based on examining the physical processes involved. For
example, Shafer et al. (1982) examined hourly flow records for the Rio Grande at Del Norte
and determined that about 35 percent of a particular day's snowmelt/rainfall appears as
runoff on that same day and 65 percent om the following day. Using this information, they
determined that the SRM model should include two imput terms (egn. (5)). The analytical
approach uses the cross-correlation structure between the input and output (flow) series to
identify model order. In this approach, the input series is "prewhitemed" by fitting a
standard time series model to the data, resulting in a white noise process. This same model
is then applied to the output series, and the cross-correlation at various time lags is
calculated. This cross~correlation is scaled using the standard deviation of the tranms-
formed input and output processes to produce an impulse response function (Box and Jenkins,
1970): ‘

OQ'
vk=5;p1,q,(k) k=0,1,2,.... (6)
where v = impulse response function
GI,,G . = standard deviation of the transformed input and flow series
pI'Q' = gross~correlation between the transformed input and flow
k = time lag.

The impulse response function for deily input/flow data for the Rio Grande is shown in
Fig. 1. When compared with known impulse response curves (Box and Jenkins, 1970), it indi-
cates that the model should include one past flow term and two input terms, the same as that
identified in Shafer et al. (1982). The analytical approach is especially useful in complex
cases, such as hourly modeling or large basin modeling, where there may be several time
periods of pure delay and a large number of previous flow and input terms to be included.
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Figure 1. Impulse-response function for the snowmelt/precipitation input
(impulse) and streamflow (response) on the Rioc Grande River.
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The number of noise terms to be included in the model will be determined by analyzing
the residual series, £s after preliminary estimation of the ¢ and w model parameters.

2. Parameter Estimation

The model parameters (¢, w and 8) were estimated using a nonlinear least squares
(NLS) algorithm. 1In the NLS approach, eqn. (1) is solved for ¢&,, which represents the
difference between the observed and forecast flows. Parameters are Selected using a Newton-
Raphson iterative techmique which minimize 3e?. Under the conditions of stationarity and
normality of the data, nonlinear least squares is an approximate maximum likelihood
estimator. Since these conditions are not strictly met, the estimator must be considered
suboptimal. Nonetheless, the NLS approach was found to provide consistent, stable parameter
estimates.

Several schemes to account for the variation of basin hydrologic conditions with the
ARMAX model were investigated. In the seasonal version, parameters were estimated on a
monthly and biweekly basis. In a second approach, the level of flow in the river was used
as an index of antecedent moisture conditions. 8ix thresholds of flow were chosen and a set
of parameters was calculated for each level. The ¢ and w parameters for the threshold
and seasonal models are shown in Figs. 2 and 3. In Fig. 2 it can be observed that the ¢
parameter is inversely proportiomal to flow while the w, and w, parameters (accounting
for the current and previous days dinput) are genera?ly proportional to flow. Thus,
increasing flows indicate greater antecedent soil moisture and correspondingly, an increased
amount of snowmelt/rainfall appearing as streamflow. The seasonal behavior of w, and w
in Fig. 3 suggests that early in snowmelt season, the proximity of the snowpack to the river
results in a majority of a current day's snowmelt appearing as runoff on that same day. As
the season progresses, the snowpack recedes and most of the snowmelt produced on a given day
does not appear as runoff until the following day (represented by the fact that wy > wg)‘

Two additional model parameterizations were evaluated. In the first, the snowmelt and
rainfall terms are included in the model separately. The model for the Rio Grande River
then becomes:

-— ¥
Qu = 0p Quog * WMy F Wy * WPy F WPyt k)—:o O Stk 7
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where Mt = 2z (T -Tb)(S ) T
i=1
AT = total area
3 i Ai
P = 2P -
t i=1 t AT
In eqn. (7), represents an areal average value of the product of degree days and

snow-covered area an& P represents an areal average value of precipitation. The degree
day factor is now includéd in the w, and w, parameters. In addition to eliminating the
need for estimating the degree day factor, the model form of egn. (7) allows separate
consideration of the effects of snowmelt and rainfall on river flow. Perhaps the primary
difficulty in using the SRM approach is obtaining values of the snow-covered area (see
eqn. {2)). Since aerial photography is too expensive to be used on a regular basis,
satellite imagery has received primary emphasis. Problems associated with satellite data
include «cloud cover, estimation between time of satellite passes, and difficulty in
obtaining imagery quickly for use in real-time forecasting. Alternatives to satellite
imagery include snow-cover depletion curves based on accumulated degree days, or possibly
relating areal snow cover to daily snow water equivalent (SWE) as measured at SNOTEL sites.
An approach investigated here was to eliminate the snow-covered area texm from the model.
The melt term in eqn. (7) then becomes:

3 A
Mt = 3 (T -T ) (8)
i=1 A
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Figure 2. ARMAX model parameter estimates based on flow thresholds.
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Figure 3. Biweekly estimates of the ARMAX model parameters.
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It is obvious that the parameters w, and w. in egn. (7) must also now account for
the areal extent of smow available for melting, as well as the "effectiveness" of degree
days in causing melt and the amount of melt to appear as ronoff. w, and w, could not be
seasonally estimated because of the dramatic differences year to vear in the SCA. It was
determined that the parameters could be allowed to vary on a daily basis using a Kalman
filter to update the parameters based on measured data. This has been used in rainfall-
runoff models for a number of vyears (Todini and Bouillot, 1975) and initial attempts in
spowmelt runoff (Burns and McBean, 1985) appear promising. Daily values of w, and w

for the vyears 1975 and 1976 are shown in Fig. 4. It can be seen that the parameters
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Figure 4. Kalman filter estimates of snowmelt parameters (wo and wl)
in the ARMAX model of eqmn. (7) for the years 1975-76.

increase rapidly in the early snowmelt season, as the degree day effectiveness in causing
melt and soil moisture are both increasing. At the peak of the snowmelt season, the
parameters are approximately constant, as degree day effectiveness continues to increase,
but snow-covered area is decreasing. This latter factor becomes dominant as the season
progresses, and the parameters decrease. It can also be seen that in the early season, w

(current day's melt) is dominant. As the season progresses, wy (previous day's melt

becomes more important. The application of Kalman filtering has some inherent problems.
The user must determine the noise covariance matrices in the filter, which determine how
rapidly the parameters change. Analytical methods of estimating these matrices resulted in
overestimation and subsequent filter imstability. It appears that the problem results from
inaccuracies in the measurement and areal averaging of precipitation and degree days. The
fairly large errors inherent in these data may cause the parameter values to fluctuate too
rapidly.

Two additional advantages of the ARMAX formulation are the availability of diagnestic
checks to determine model adequacy and the calculation of confidence limits for a forecast.
The presence of significant autocorrelation in the forecast error sequence is an indication
of model inadeguacy. This represents the presence of additional "“information," in the data
which the model is not wusing. Tests of the SRM model and ARMAX models without moving
average terms showed the presence of residual autocorrelation. The inclusion of. moving
average terms increased the forecasting accuracy of the ARMAX model and eliminated the
autocorrelation. Confidence limits for the forecast can be obtained using the variance of
the forecast errors. Theory and results are available in Haltiner (1985).

RESULTS

The previously described models were used to make one- and three-day ahead flow
forecasts for the period 1973-1980. In addition a simple ARMA(i,1) model which only uses
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previous values of streamflow (no snowmelt/rainfall inputs} was also included; it represents
the forecasting accuracy which can be achieved relatively simply without attempting to model
the rainfall or snowmelt. Models were compared using a mean squared error criterium (MSE).
The model forecasting results are presented in Table 1. This table also includes the number
of parameters which are estimated ‘during the forecasting period and an indication of the
presence of significant autocorrelation in the forecast errors.

Table 1. Comparison of one-day-ahead forecasting results for the period 1973-1980.

Model MSE No. of Param. Res. Corr. Test

1. SRM-1 40.1 672 Failed
(cont. varying
param.)

2. SRM-2 41.3 84 Failed
(seasonal
param. )

3. ARMA(1,1) 56.3 12 Passed
{threshold
param.)

4. ARMAY-1 38.8 60 Passed
{combined
input/threshold
param.)

5. ARMAX-2 35.1 88 Passed
(combined input/ ‘
seasonal param.)

6. ARMAX-3 33.5 78 Passed
(sep. snow/ppt
input, seasonal
param. )

7. ARMAX-4 42.2 N/A Passed
(K.F. est./no
SCA data)

Models 1 and 2 represent the Snowmelt Runoff Models described by Shafer et al. (1982),
adapted to include measured data. In Model 1, the parameters were re-estimated every 15
days for the eight-year forecasting period. In Model 2, average parameters were calculated
for each 15-day period. Model 3 is the simple time series model with six sets of parameters
based on flow thresholds. Models 4. and 5 correspond to the ARMAX models described in
eqa. (1), using a combined snowmelt/rainfall input. Model 6 is the ARMAX model described in
eqn. (7}, with separate snowmelt and rainfall inputs. Model 7 uses the Kalman filter algo-
rithm to update the parameters on a daily basis; it does not use the SCA data used in the
other models.

A comparison of the MSE shows that the ARMA(1,1), which does not include raim or
snowmelt, gives the poorest forecasts. The ARMAX Models 4, 5 and 6 give better forecasts
with fewer parameters than the SRM models. Since the form of the SRM and ARMAX models is
similar, the smaller MSE of the latter result from the analytical parameter estimation
techniques and the inclusion of moving average terms. The presence of residual autocorrela-
tion in the SRM models indicates that the model forecasts could be improved by including the
previous model errors in the forecasts.

The number of parameters in Models 4 and 5 is somewhat misleading. compared with
Model 6, since 4 and 5 each contain 36 estimates of the degree day factor (a’ in eqn. (2)},
which were mot analytically estimated. In general it was found that for modéls using equal
numbers of parameters, seasonal and threshold parameter estimation gave about equal fore-
casting accuracy. Model 7 results show that relatively good forecast accuracy can be
obtained without the snow-covered area data by using the Kalman filter approach. However,
problems with parameter stability and estimation of the KF noise matrices suggest that this
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approach is still a research topic and not an operational tool at this time.

the one-day-ahead forecast and measured streamflows for the 1973 snowmelt season using
(It should

Model 5. Three-day-ahead forecasts for 1980 using Model 4 are shown in Fig. 6.

be noted that in using the ARMAX and SRM models in this study, the input data (temp. and
ppt) on the forecast day are assumed known. In operational use, these data would be

forecast, either using NWS forecast or autoregressive type forecasts.)
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Comparison of measured flows and one-day-ahead forecasts
for 1973 using Model 4 of Table 1.
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Comparison of measured flows and three-day-ahead forecasts
for 1980 using Model 5 of Table 1.
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CONCLUSIONS

The ARMAX formulation of the SRM model appears to offer a number of advantages over
current procedures. Analytical techniques are available to identify model format and
estimate model parameters. Diagnostic checks are available to insure that the model is
operating properly, and confidence limits cap be included with a forecast. The model can be
updated in real time using previous forecast errors; in addition, the use of Kalman
filtering to update the model parameters in real time appears promising.
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