CLIMATE INDUCED CHANGE IN THE STANDARD DEVIATE OF SNOW DEPTH AND WATER EQUIVALENT
by
John A. Dracup,! Jack P. Sample,? and Paul M. Wells?
ABSTRACT

Data from 72 snow courses selected throughout the Anglo Pacific Coast of North America were analyzed in order to document
the existence of a dramatic climate induced change in the standard deviate of snow depth and water equivalent that began in 1976.
Temporal and spatial comparisons were made between each of the 72 snow courses. A pronounced decrease in the standard deviate of
snow depth and water equivalent was evident for the courses located throughout the Pacific Northwest. The results suggest that the step-
like anomaly ended after 1987, quite possibly coinciding with the end of a sustained El Nific warming trend and the return of a La Nifia
cooling trend resulting from the Southern Oscillation cycle in the tropical Pacific Ocean.

INTRODUCTION

In the mid-1970's a notable shift in a substantial number of climatically influenced variables, such as the salmon catch in
Alaska, the atmospheric CO, over the South Pole, the salinity of Puget Sound, the wind speed in Medford, Oregon, the conductivity of
the Snake River (Ebbesmeyer et al., 1991), and the depth of the Rocky Mountain snow pack (Changnon et al., 1990) were observed and
reported. It has been hypothesized that this abrupt climate shift was caused by a sustained El Nifio warming trend that persisted from
1976 until the return of a La Nifia cooling cycle in 1988 (Kerr, 1992a).

This study focuses on a climate induced shift in the standard deviate of snow depth (SND) and snow water equivalent (SWE)
measured on April 1st of each year (USDA, 1963-1993). The area of interest was the Anglo Pacific Coast of North America, a region
composed of the American states of California (CA), Oregon (OR), Washington (WA), and Alaska (AK), the Canadian province of
British Columbia (BC), and the Canadian territory of Yukon (YK). The independent analysis of the 72 selected snow courses allowed for
the determination of both spatial and temporal trends for regions of the Pacific Coast. An approximate shift for any given region was
determined by averaging the standard deviate shifts for the stations located within it. A spatial comparison of the stations allowed for the
determination of whether the shift in SND and SWE standard deviates varied by location, was consistent throughout the Pacific Coast, or
showed a random distribution.

‘ In order to conduct temporal comparisons, three time scales of varying lengths are studied. All three time scales were centered

around 1976, the year that the shift in standard deviates occurred. The shortest time span, the seventeen years from 1968-84, follows the
research of the 40 environmental variables conducted by Ebbesmeyer et al. (1991). A second time scale from 1965-87 corresponded to
the 1988 retumn of a La Nifia cooling cycle which had been absent for over a decade (Trenberth, 1990). A third scale, the maximum scale,
incorporated the longest time span for the available data.

Comparison of the shift in standard deviate for SND and SWE for the three temporal scales could aid in the determination of
why the standard deviate shift occurred. The possible linkage of the shift in SND and SWE standard deviates to the El Nifio/Southemn
Oscillation (ENSO) would increase the likelihood of accurate predictions of SND and SWE, since computer models are becoming
increasingly accurate in their ability to foretell an El Nifio by approximately two years (Kerr, 1992b).

APPROACH AND DATA

, SND and SWE data were obtained from 72 snow courses throughout the Anglo Pacific Coast of North America (Figure 1). SND
is the measured snow depth and SWE is the quantity of water that is contained in a standardized column of snow. SND and SWE were
chosen as the environmental variables for three reasons; 1) by concentrating on two variables it is possible to make spatial comparisons
between the snow courses in order to determine where the shift in standard deviate was strongest, 2) there is an abundance of snow data
available throughout the Pacific Coast, and 3) snow is one of the few environmental variables that remains independent of
anthropological affects. April 1st SND and SWE data were chosen becanse of their consistency and availability for a large number of
snow courses. Also, the April 1st measurement is frequently used to predict the available water supply for the following hydrologic year,
and consequently a change in the standard deviate of April 1st SND and SWE would affect regional water supply availability (USDA,
1983-1993).
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Figure 1. Distribution of the 72 snow courses selected throughout the Anglo Pacific Coast of North America

Data for the province of British Columbia (BC) and the Yukon territory (YK) were obtained from the Ministry of Environment,
Lands, and Parks and the Department of Indian and Northern Affairs. Data for the Pacific Coast of the United States were obtained from
the Soil Conservation Service, U. S. Department of Agriculture, and the California Department of Water Resources.

Snow courses were selected based upon the following criteria: length of avaiiable record, a minimum number of years missing
data, and location of the snow course. Preference was given to courses that had been continuously recording data from 1960 through the
present. In some regions, most noticeably in AK and northern BC where records were not available throughout the desired time scale,
courses with the longest available records were chosen. Stations with complete records were desired for study, and therefore courses with
the least number of years with missing data were selected. Concerning the location of the snow course, two or three snow courses were
preferred for each degree of latitude from 35°N to 68°N. However, in AK and northern BC there were a sparse number of courses with
reliable records, making the number of courses per degree of latitude low in these regions.

METHODOLOGY

To study the shift in standard deviate of SND and SWE for each station, an approach similar to that followed by Ebbesmeyer et
al. (1991) was chosen. A sample calculation sheet is shown Table 1 and a brief explanation of these calculations follows. The shift in
SWE and SND standard deviates was considered to begin in 1976: In order to compare the standard deviate shift for each temporal scale,
an equal number of years was analyzed before and after 1976. For example, analysis of the 1968-1984 scale entailed the comparison of
the eight pre-shift years of 1968-1975 with the eight post-shift years of 1977-1984.

The first step of our calculations was to determine the mean, X, for the SWE and SND data for each of the three temporal
scales studied. A standard deviation was calculated for each temporal scale for the data from the pre-shift years, 0, and the data from
the post-shift years, 0.,
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STATION NAME: TENQUILLE LAKE
YEARS DEPTH (in) | Vi(1960-92) - | Vi (1965-87)! Vi (1968-B4)| SWE (in) | Vi (1960-92}| Vi (1965-87)1 Vi (1968-84)

1960 87.0 -1.103 35.8 -0.914

1961 138.0 0774 585 0.945

1962 83.1 -1.245 345 -1.016

1963 118.1 0.020 44.2 -0.263

1964 135.0 0.632 60.4 1.016

1965 94.1 -0.847 -0.869 37.0 -0.819 -0.814

1966 105.1 -0.449 ~0.489 a8.2 0.059 0.024

1967 155.9 1.388 1.265 68.6 1.659 1.553

1968 1429 0.916 0.318 0.753 57.4 0.782 0.715 0731
1968 137.0 0.703 0.612 0.553 846 0.562 0.505 0.521
1870 748 -1.54 ~1.535 -1.561 268 -1.619 -1.5678 ~1.566
1971 142.1 0.888 0.789 0.726 53.5 0.476 0.423 0.438
1972 1314 0.490 0.408 0.352 572 0.766 0.700 0.716
1973 118 -0.207 «0.268 -0.303 4.9 -0.263 -0.283 -0.268
1974 168.1 1.826 1.686 1.608 €9.8 1.755 1.645 1.662

1975 103.1 -0.620 ~0.557 -0.588 41.7 -0.451 -0.463 -0.448
2

818 663 4452 | 1285 237 2288 | -19%8 | -1.696
102.0 or2 o672 | a2 419 05% | 0485 | -0.409
713 2189 865 | 1637 280 1881 | 1817 | 1397
296 0.837 0764 | 0699 %09 0627 | 0562 | 0476
%7 112 0993 | -0895 331 387 | 201 | 103
1108 0.323 03% | 033 443 0304 | 020 | 0230
106.7 -0.506 0489 | -0465 404 0684 | 0810 | -0518
86.1 -1.002 0902 | -0816 390 0817 | 072 | <0616
5.7 021 0917 388 08% | 0738
1986 1319 0.669 0.490 502 0.266 0.189
1987 109.4 0.378 0,382 476 oot | -0ots
1088 1126 0231 208 0741
1988 124.3 0.173 457 -0.171
1990 8.4 0892 109 0627
1991 137.8 0.945 857 0.798
1992 105.1 0,580 486 0.114
MEANVi:  PRE.1976 0415 0187 021 0.179 0.243 0.255
POST-1976 |  -0.643 082 | 0965 o647 | 0801 | 0912
SHIFT: 0.758 4015 | 483 0826 | 1044 | 1168
YEARS | MEAN DEPTH| SIGMA1 | SIGMAZ YEARS |MEAN SWE| SIGMA1 | SIGMAZ
1960-1982 | 117.544 27.685 21.434 1960-1992 | 47.441 | 12743 | 10358
19651987 | 119.273 28.966 26744 19651987 | 47865 | 13340 | 12317
19631984 |  120.743 29.433 20.231 19681984 | 47.665 | 13317 | 14.106

Table 1. Sample calculation for the determination of the shift in standard deviate of snow depth and water equivalent,

We then proceeded to find a normalized value for the SND and SWE data, designated v,, for each time scale from the following
equation, : )
V= (Xj - XV O,
where x; is the data value for the ith year and O " is the standard deviation for the pre-shift years when n = 1 and is the standard deviation

for the post-shift years whenn = 2.

After the data was normalized, the mean of the normalized data was found for the pre-shift years, v, ;, and for the post-shift

years, v, ,, for each of the three temporal scales, Finally, the shift in standard deviate, d, was calculated by the following equation,
d=v_,-v,

By repeating these calculations we are able to determine the shiﬁrqlf\ s?;ndard deviate for the 72 snow courses, the three independent

temporal scales for each station, and the SND and SWE data for each station.

When data was missing from a station's records, the year without available data was considered to be nonexistent. Therefore,
the calculated mean, X, only includes the years with available data. Similarly, the mean of the normalized data values, v ,, would also
include only the years with available records.

The data was normalized in order to allow for the comparison of the shift in standard deviate in the SND and SWE data to
other climatically sensitive variables.
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SHIFT IN STANDARD DEVIATE

STATE NUMBER OF SHIFT IN STANDARD DEVIATE
(PROVINCE) SNOW COURSES MAXIMUM 1965-87 1968-84
AKIYK 11 -0.245 -0.306 -0.202
BC 23 -0.451 -0.643 -0.661
WA 10 0.772 -0.942 -0.936
OR 10 -0.624 -0.568 -0.614
CA 18 -0.203 -0.222 -0.181

Table 4. Summary of the shift in standard deviate for snow water equivalent by location.

STATE NUMBER OF SHIFT IN STANDARD DEVIATE
(PROVINCE) SNOW COURSES MAXIMUM 1965-87 1968-84
AKIYK 11 -0.176 -0.230 -0.265
BC 23 -0.536 -0.660 -0.676
WA 10 -0.724 -0.881 -0.838
OR 10 -0.539 -0.433 -0.448
CA 18 -0.166 -0.153 -0.118

Table 5. Summary of the shift in standard deviate for snow depth by location.

1.5 J
CA “"OR 1 WA BC YK
1 A AK
z  VARIABLE
-1 s 1965-87
=+ 1968-84
-1.5
35.00 40.00 45.00 50.00 55.00 60.00 65.00
: LATITUDE (°N)

70.00

Figure 2. Third degree polynomial best-fit curve for the shift in standard deviate in snow water equivalent for the 72 snow courses

studied.
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CA OR | WA BC YK

SHIFT IN STANDARD DEVIATE

- ?, %
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" * ® 50 55 60 65 70
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Figure 3. Third degree polynomial best-fit curve for the shift in standard deviate in snow depth for the 72 snow courses studied.

CONCLUSION

The SWE and SND standard deviates for each of the 72 snow courses studied are listed in Table 2 and Table 3 respectively.
From these tables it is apparent that the change in standard deviate for all of the stations in WA and OR were negative. A majority of the
standard deviate shifis for the stations in CA, BC, YK, and AK were also negative. Table 4 summarizes the SWE standard deviates by
state, province, and territory. The largest standard deviate occurs for the 10 stations located in WA. The pronounced standard deviate
shift in WA is also evident in Figure 2, a plot of the standard deviate shift for SWE for the 72 snow courses for each of the three time
scales. Third degree polynomial best fit curves were drawn through the shifis for each time scale in order to more easily identify spatial
and temporal trends. For each of the three temporal scales, the largest decline in SWE standard deviate occurs for the snow courses
located in WA and southern BC, with courses in OR and central BC also experiencing significant standard deviate shifts. The slope of
the best fit curves in Figure 2 are larger for the courses located to the south of WA than for the stations located to the north of WA,
Therefore, the shift in standard deviate for SWE is more spatially sensitive for CA and OR then it is for BC.

The shift in the standard deviate of SND has been summarized in Table 5 by state, territory, and province. It Figure 3 the
change in standard deviate of SND for the 72 courses studied has been plotted for each temporal span and third degree polynomial best
fit curves have alse been constructed. Comparing Figure 2 to Figure 3, the best fit curves representing SND and SWE show a marked
similarity. Therefore, the same conclusions can be made for the standard deviate shift for SND as were made for SWE, namely that a
strong change in standard deviate for SND existed throughout the Pacific Northwest and lasted approximately a decade. One noticeable
difference in the best fit curves for the standard deviate shift for SWE and SND is the relation of the best fit curve representing the
maximum time scale to the best fit curves representing the 1968-84 and 1965-87 time scales. For SWE, the curve for the maximum scale
shows a strong step back up to a zero shift in standard deviate, while the best fit curve representing the shift in standard deviate of SND
for the maximum time scale does not show such a dramatic shift towards zero standard deviate. SWE appears to be more temporally
sensitive to the climatically induced shift in standard deviate then Because the standard deviate shifts for SND and SWE are not
identical, a shift in the standard deviate of SWE for a snow course would not correspond to an equivalent standard deviate shift for SND.
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The length of records for stations in AK and YK seldom date back prior to 1964. Therefore, no specific comparisons could be
made between the standard deviate shifts for SWE and SND observed in the maximum time scale and the 1965-87 time scale.
Consequently, no comparisons between these two time scales could be made for this region north of approximately 60°N. From Figure 2
and Figure 3, it is apparent that the best fit curves of the standard deviate shifts for the 1968-84 and 1965-87 time scales are nearly
identical, The marked similarity between the best fit curves for the 1968-84 and 1965-87 time scales implies that the standard deviate
shift in SWE and SND was nearly constant throughout the decade proceeding its 1976 inception. However, the best fit curve of the shift
in standard deviate for the maximum scale deviates from the curves for the two shorter time scales considerably from northem OR
through northern BC. The shift of the best fit curve for the maximum time scale back toward a zero standard deviate line suggest that the
climatically induced shift in the standard deviate for SWE and SND ends after 1987.

From Figure 2 and Figure 3 it is evident that the best fit curves of the standard deviate shifts for all three time scales nearly
coincide. Because all three curves nearly coincide, it appears that the snow courses of CA are not temporally sensitive to the shift in
standard deviate of both SWE and SND. The snow courses in CA are however spatially sensitive, with snow courses in northern CA
experiencing a moderate negative change in SWE and SND standard deviate while courses in central CA experienced either a small
positive or negative change.

The return of the La Nifia cooling cycle in 1988, which brought an end to the decadal El Nifio anomaly, it is apparent that this
coincides with the end of the climatically induced shifts in the standard deviate of SND and SWE prominent throughout the Pacific
Northwest. The Pacific Northwest shows a strong influence by El Nifio on SWE and SND, as well as other climatically sensitive
variables (Kahya et al., 1993). The shift in standard deviate of SND and SWE in CA and AK do not show any temporal sensitivity to the
El Nifio anomaly.

For the Pacific Northwest, future research is necessary to determine if the same climatically induced shift in standard deviate
is evident during other El Nifio/La Nifia cycles. If the SND and SWE of snow courses in the Pacific Northwest region are consistently
affected by the ENSOQ, then accurate prediction of an ENSO would consequently enable better predictions of SND and SWE.
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