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ABSTRACT

We describe an approach to model distributed snow water equivalence (SWE) that merges field measurements
of depth and density with remotely sensed snow-covered area (SCA). In 1993 two teams conducted an intensive
snow survey in the 92.8 km” Blackcap Basin of the Kings River. We measured snow depth at 709 points and
density in five snow pits and along five transects using a Federal Sampler. Sample locations were chosen to be
representative of the range of elevations, slopes and aspects of the basin. Regression tree models showed that net
radiation, elevation, and slope angle account for 60-70% of the variance in the depth measurements. Density was
distributed over the basin on a 30m grid with a multiple linear regression model that explained 70% of the
observed variance as a function of the same three variables. The gridded depth estimates combined with modeled
density produced spatially distributed estimates of SWE. An unsupervised spectral unmixing algorithm estimated
snow cover fractions from Landsat-5 Thematic Mapper data acquired at the time of the snow survey. This method
provides a snow cover fraction estimate for every pixel. We used this subpixel map as our best estimate for SCA
and combining it with the SWE map allowed us to compute SWE volume. We compared the estimated volume
using the subpixel SCA map with several SCA maps produced with simulations of binary SCA mapping
techniques. Thresholds of 40%, 50% and 60% fractional cover were used to map binary cases of full snow cover or
no snow cover. The difference in basin SWE volume was up to 13% depending on the threshold used to classify
snow-covered versus snow-free areas. The percent differences in volumes roughly corresponded to the percent
differences in SCA between the methods.

INTRODUCTION

In watersheds where melting snow produces much of the annual runoff, the most important variable to
hydrologic forecasters is the total volume of water stored in the form of snow. In the western U.S., for example,
information on snow cover has become critical as many interests compete for the variable water supply. As snow
melt modeling and forecasting tools become more complex, the spatial distribution of snow water equivalence
(SWE) has increased in importance. Information on the spatial distribution is critical to accurate forecasting of
both total volume and timing of the runoff. Operational efforts (e.g., Carroll, 1995; Carroll and Cressie, 1996) and
research efforts (e.g., Elder et al., 1991 and 1995; Hosang and Dettwiler, 1991; Elder, 1995) to map SWE utilizing
remotely sensed data to interpolate point and transect measurements have progressed rapidly in recent years,
providing information in data-sparse regions. Spatial models developed for operational purposes use standard
network data from snow courses, SNOTEL sites and aircraft flight lines (Carroll et al., 1995), while research efforts
have had the benefit of comprehensive outcome-based snow surveys.

Snow-covered area (SCA) can be measured with a variety of methods, such as aerial photography and satellite
imagery, but operational measurements of SWE in montane areas are still ground based. Measuring SWE with
airborne techniques, such as gamma-ray attenuation along flight lines, or satellite techniques, such as active and
passive microwave backscatter, either are not suitable or have not been sufficiently developed for operational
observation of deep snow cover in rugged mountain terrain. This void has motivated recent research to use land
cover, terrain and other information to model the distribution of SWE. When snow cover in a basin or modeling
area is discontinuous, the total SWE is more sensitive to the SCA than to the average snow depth. Therefore,
interpolations of SWE are commonly adjusted with maps of snow-covered area, of which there are two types.
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Binary mapping is the process where one or more thresholds determine whether a pixel will be assigned a snow
cover of 100% or 0%. Visible and near-infrared sensors have been used extensively to delineate areas of snow
cover using both supervised (e.g., Dozier, 1984; Maxson et al., 1996), and unsupervised binary classification (e.g.,
Dozier, 1989; Hall et al., 1995 and 1996). This type of snow map provides information on the snow boundary,
providing SWE interpolation techniques the locations of pixels where SWE equals 0. Errors in SWE estimation
using binary maps derive from the interpolation scheme within the snow-covered area. For point measurement
sites, snow and no-snow classes represent 100% and 0% snow, respectively. However, at resolutions of
commercial satellite sensors, many pixels may contain a mixture of snow-covered and bare areas. Thus, while
point-like data would describe the true distribution of snow cover, pixels from most sensors describe some
threshold class on the probability density function (PDF) of snow cover fractions. Interpolations of SWE in this
case are adjusted by removing snow from all snow-covered pixels below the binary threshold, while snow-free
pixels above the binary threshold will be assigned some SWE value. The net error is small if the PDF has a
symmetric distribution around the mapping threshold at all scales, from individual pixels to cumulative totals over
larger areas.

In contrast, recent investigations have used spectral mixture analysis to estimate snow cover fractions on a
pixel-by-pixel basis (Nolin and Dozier, 1993; Painter et al., 1996; Rosenthal and Dozier, 1996; Rosenthal, 1996a
and 1996b). The spectrum of each pixel is assumed to be comprised of area-weighted contributions of pure
component or endmember spectra (pure snow, rock, vegetation, etc.). Spectral mixture analysis estimates the areal
fractions of scene endmembers in each pixel, plus an error term describing the performance of the mixture model
for each pixel. Snow area-fraction maps offer the opportunity to adjust SWE interpolations on a pixel basis. The
preliminary estimate of SWE can be multiplied by the snow area in each pixel to yield the total water equivalent
volume.

In this paper we examine different methods for interpolating SWE and the impact on SWE estimates of
mapping SCA with the two methods.

STUDY SITE

The Blackcap Basin is a headwater catchment of the North Fork of the Kings River, within the Sacramento
River basin of California (Figure 1). It covers 9280 ha, and ranges in elevation from 2476 m at the Beaver
Meadows stream gauge to 3827 m at the summit of Mt. Goddard. The average slope derived from the USGS 30m
DEM is 16°, with a general west northwest drainage towards the Pacific Ocean. Alpine cirques and dense forest
cover substantial portions of the basin, which constitute similar proportions of the seasonally snow-covered Kings
River basin.

FIELD WORK

Field work was conducted in the basin from 5 to 7 May, 1993. Two teams measured snow depth with alominum
probes and dug snow pits to measure snow density. Depth transects and snow pits were located using portable GPS
units so the data could later be registered to a 30m USGS DEM. Figure 2 shows the basin with the location of the
depth transects and snow pits.

One team remained in the alpine zone, making about 400 depth measurements and excavating four snow pits on
a variety of representative aspects, elevations, and slopes. Depths were taken along transects with 10 and 20m
resolutions.

The second team worked primarily below weeline, taking over 300 depth measurements, 155 SWE
measurements with a Federal (Mount Rose) Sampler, and digging two snow pits. Federal Sampler measurements
were calibrated against snow density estimates from the pits. Depths were measured at 10m intervals along six
transects selected for differences in vegetation cover, aspect and elevation. The selection of the transect locations
is subjective and biases the results of the study, but such decisions must be made when surveying large basins with
limited time and personnel. Federal Sampler measurements were taken at the beginning, end, and at 100m
intervals along four of the transects. Each set of 5 Federal Sampler measurements was made in a "+" pattern, with
cores at a central point and Sm away in four directions. The mean of each set was taken to represent the local
SWE. The first, last, and central points of the Federal Sampler transects were located with a portable GPS unit. A
single Federal Sampler transect was taken at an elevation of 3230 m.
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1993 SNOWPACK CONDITIONS

Seasonal precipitation for the state on May 1 was estimated to be 143% of the 50 year average (California
Cooperative Snow Surveys, 1993). Precipitation over the Tulare Basin (which includes the Kings River and
Blackcap Basin) was estimated to be 134% of the 1 May average, while SNOTEL sites indicated a mean of 0.85m
of water basin-wide, 140% of the 1 May average. Unimpaired runoff from the Kings River drainage was forecast
at 150 percent of the April-July normal discharge.

The upper Blackcap Basin was sampled before substantial snow loss occurred from melt. Snow pit temperature
profiles showed that the cold content had not yet been entirely removed at elevations between 3300 and 3500 m,
with temperatures of some strata being near -1°C.

The lower portions of the basin had experienced considerable melt and runoff by the time the field work began.
Discharge in the streams was relatively high, overland flow was observed on almost all snow-free slopes, and
ponding was observed in hollows not easily drained. In the lowest portions of the basin, large expanses of granite
slab and unforested terrain were snow-free on south-facing slopes.

MODELING METHODS

The goal of the SWE modeling portion of the study was to distribute SWE over all snow-covered portions of
the basin as accurately as possible. Snow depth and density, the two components of SWE at a point, had to be
spatially interpolated over the basin.

Snow Depth

Snow depth exhibits great spatial variability in montane basins and a long-standing question in snow hydrology
has been how best to distribute point measurements of snow depth over complex terrain. The approach we have
used employs the relatively new statistical technique of binary decision trees (Breiman et al., 1984; Clark and
Pregibon, 1992). The technique has been shown to produce satisfactory results in a small alpine basin (Elder, 1995;
Elder et al., 1995). The current study used the S-Plus mathematical language (Chambers and Hastie, 1992) to
construct the regression models (Clark and Pregibon, 1992).

Co-registered independent variables, paired with the dependent variable, form a learning sample set for the
regression tree model. Regression trees are constructed by sequentially dividing the data set into binary groups
using all binary possibilities and all independent variables. The split that maximizes the reduction in total tree
deviance is the split chosen for a given data group or node. Each descendant node is then repeatedly split in the
same fashion. Continued splits resulting in the same number of nodes as data points are possible, but give a
statistically and physically unreal model of the data. Typically, regression tree algorithms overfit the data, then
prune the resultant tree back to a statistically defensible size. Once an acceptable tree is grown and pruned using
the learning set, the tree can be used to predict the dependent variable (in this case snow depth) over space using
the full set of independent variables. The reader is referred to Breiman et al. (1984) for a comprehensive
discussion of regression trees.

In this study, the independent variables used to model snow depth were calculated net radiation, elevation and
slope. Potential net solar radiation was calculated using the algorithm of Dozier (1980) as implemented in IPW
software (Frew and Dozier, 1986) and using atmospheric parameters derived from LOWTRAN7 (Kneizys et al.,
1988). Daily values were calculated for each pixel in the basin for the 15th of each month from December through
April. The cumulative value for the five dates was used as an index of net solar radiation. Elevation and slope
were derived directly from a 30 m USGS digital elevation model of the basin. All spatial modeling was carried out
at the 30 m grid scale using the GRASS GIS where co-registered data layers of net radiation, elevation and slope
were constructed for the entire basin. Figures 3 through 5 show digital maps of net radiation, elevation and slope,
respectively.

The overfit snow depth tree was pruned to 25 nodes based on cross validation results and the coefficient of
determination. The 25-node tree with the decision splits and terminal node SWE values is plotted in Figure 6. The
tree model was then used to construct a spatial map of snow depth for each 30 m pixel in the basin as shown in
Figure 7.
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Snow Density _

Snow density is conservative in comparison to depth, particularly after the snowpack has ripened (Elder et al.,
1991). Therefore, fewer measurements of density are required than of depth. Density values were derived by two
methods. Where Mt. Rose measurements were taken along a depth transect, the mean density was assigned to the
midpoint of the transect. Where snow pits were excavated and density profiles obtained, the weighted mean
density from the pit was assigned to the pit location. Five snow pit and five transect mean densities were used to
distribute density over the basin. A simple linear model was applied to the point values of snow density from the
pits and transects. Independent variables used to estimate density were net solar radiation, elevation and slope.
Calculated net radiation and elevation were used because both are physically based parameters that control the
energy balance at a point in the basin, and therefore, snow metamorphism and ultimately snow density. Slope
relates to density through redistribution of snow via avalanching and wind transport.

The simple linear model explained 70% of the observed variance in the field measurements of density (R =
0.70, n = 10, p = 0.054), although the aggregation of the transect data tends to produce an optimistic fit. Figure 8
shows the distributed density over the basin. Note the similarity between the distributed density of Figure 8 and
calculated net radiation in Figure 3. The strong correlation should not come as a surprise because the energy
balance of the snowpack controls metamorphism and densification, and the snowpack energy balance is dominated
by radiation in this environment.

Snow-Covered Area

Most algorithms for estimating SCA from multispectral satellite data are binary: pixels are classified either
snow-covered or snow-free. (Rango and Itten, 1976; Martinec and Rango, 1981; Dozier and Marks, 1987; Dozier,
1989; Hall et al., 1995). Most pixels, however, are mixtures of snow, rock, vegetation, or water. Rosenthal and
Dozier (1996) used a decision tree model (Breiman et al., 1984; Clark and Pregibon, 1992) to generalize spectral
mixture analyses of reference Thematic Mapper (TM) data and accurately map snow cover in the Sierra Nevada at
subpixel resolution. In spectral mixture analysis, the measured pixel spectrum is modeled as a linear combination
of endmember spectra. The method was first used to identify components in chemical mixtures (Lawton and
Sylvestre, 1971), but has been widely applied in the Earth and planetary sciences. For example, it has been used to
map regional vegetation and geologic substrates (Smith et al, 1990), and estimate suspended sediment
concentrations in the Amazon River (Mertes et al., 1993).

Direct, supervised spectral unmixing is an iterative, subjective, and time-consuming process, since endmember
combinations may number in the hundreds of thousands. An unsupervised approach using convex hull geometry
was described by Boardman (1993). Rosenthal (1996) developed an automated approach for mapping alpine snow
cover at subpixel resolution from TM data that provides SCA estimates comparable to those obtainable from aerial
photographs.

We used this method for mapping fractional SCA in a TM scene acquired on 13 May, 1993, and briefly
summarize it here. The decision tree program from Rosenthal and Dozier (1996) masked clouds and separated
snow-free pixels from those probably containing snow. Snow pixels were further sorted into sets of pixels
suffering from detector saturation in at least one band, and those free of saturation problems.

For each of these image fragments the dimensionality of the data D was estimated by principal components
analysis. The best set of k=D + 1 image endmembers was assumed to lie on the convex hull of the data, and the n
points on the D-dimensional convex hull were identified.

The number of sets of size k that can be drawn from a set of n points (C}) is
n!
CI‘I ——
£7 (n-kyik!
All C} mixture models (60152) were computed using singular value decomposition, with the endmember fractions
constrained to be non-negative and to sum to 1 or less. The models were ranked by RMSE and the model with the
. lowest value was chosen as the “‘best’’.

The endmembers for each image fragment were identified and converted to surface reflectance using the 58
radiative transfer code (Tanr€ et al., 1990). The best matches to the corrected endmember reflectance spectra were
found by automated search of a spectral library. The search method computed the error sum of squares between
endmember and library spectra (Lowry and Huppler, 1981), and used a library drawn primarily from Satterwhite
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and Henley, 1990. The purity of the snow endmembers was estimated by unmixing them as linear combinations of
spectra from the convex hull of the entire data set. We then modeled the full scene with the best endmember set
from each image fragment, and the model with the smallest RMSE was chosen for each pixel. The raw snow
fractions were weighted by the snow purity estimates, and the sum of all snow fractions was divided by the sum of
all endmember fractions for each pixel to produce the final fractional snow cover map.

RESULTS

Snow Depth

Qualitative assessment of the snow depth model fit can be made by noting that the snow is deepest at high
elevation, northerly-facing locations. Lowest accumulations are located at low elevations with southerly aspects.
Inspection of the 25-node tree (Figure 6) also gives credence to reasonable model representation of physical
processes. The first split is made on elevation at a relatively low value on the basin. This split separates the low
valley bottom from the remaining basin. The next split is on net radiation and as one would expect, higher
radiation values result in lower snow accumulations. This relationship between radiation and snow depth is fairly
consistent throughout the tree. Slope plays a less important role than radiation or elevation, but accumulations are
generally greater on slopes of less than 37°. We expect this result because steeper slopes avalanche more
frequently, reducing accumulation.

To obtain a more quantitative assessment of model fit, the full-sized tree was pruned one node at a time and the
volume of SWE and the coefficient of determination were calculated for each tree. The coefficient of
determination was calculated using standard statistical procedures (Zar, 1978), where the modeled depth was
compared with the measured depth for co-registered locations of all 709 field data points (Figure 9). The graph
shows a rapid increase in fit as the number of terminal nodes or snow depth classes is increased, with an asymptotic
approach to the 0.70 value. The 7-node tree explains 50% of the observed variance in snow depth and the 13-node
tree explains 60%. The 30-node tree explains 70% of the observed variance, while the 25-node tree suggested by
cross validation explains only slightly less at 68%. There is improvement in model performance with increased
model complexity after 25 nodes. We recognize that this measure of model performance ignores spatial
autocorrelation of the measured depths, but it is a relative indicator of goodness of fit. The autocorrelation problem
suggests that the R? values are overestimates to some degree.

Snow-Covered Area

Figure 10 shows the subpixel fraction map of SCA. We were interested in comparing the estimated SCA from
the subpixel method with a standard binary mapping algorithm. To simulate a binary snow mapper, we applied
three thresholds to the subpixel snow map, effectively turning it into binary maps with differing detection limits.
The first binary map was constructed by assigning 100% snow cover to any pixel with 40% or more snow cover,
and simulates an algorithm that overestimates a binary snow distribution. The second case assigned 100% cover to
all pixels with 50% or more cover, and represents a best-case algorithm. The last map assigned 100% snow cover
to all pixels with 60% or greater snow cover, representing a binary mapper that underestimates SCA. All three
maps are shown in Figure 11.

The different methods of classifying snow-covered area produced significantly different areal estimates. Table
1 summarizes SCA values in terms of actual areal cover and percent of the total basin area. In addition, the
differences between the subpixel method and the three binary mappings are shown, where positive values are
overestimates of the subpixel SCA estimate. The subpixel estimate was determined by multiplying each pixel area
by the percent of the pixel determined to be snow covered and summing over the entire basin. The subpixel
method produced a total SCA of 7660 ha, or 82.6% of the basin areca. The binary estimates were determined by
simply counting the number of pixels that were snow covered and multiplying by the pixel area. The binary
metheds ranged from an overestimate of 13.3% using the 40% threshold, to an underestimate of 3.4% with the 60%
threshold (Table 1).
Snow Water Equivalence

SWE volume was calculated by multiplying the modeled depth by the modeled density and the SCA fraction
for each pixel, then summing over the basin to obtain the total volume shown in Figure 12. The binary SCA maps
considered predicted SWE only in pixels containing snow.
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The difference between the subpixel and the 40% binary mappers in predicted SWE volume is similar to the
differences in estimated SCA, with an estimated volume difference of 13% (Table 2). The differences between the
subpixel and 50% and 60% snow mappers depart from the relative differences in the SCA analysis above,
indicating that the distributions of both the water equivalent and the snow cover are changing.

DISCUSSION

This paper presented a conservative example of the sensitivity of total basin SWE to different variables. We
focused on the spatial distribution of SWE: depth and SCA were the two primary factors of interest. The qualitative
and quantitative assessments of snow depth modeling using binary regression trees indicate that the method works
well. The density model we chose was one of a number of possibilities that could have been applied. However,
different techniques for distributing density in the basin would have produced little change in the results because
there was little observed spatial variability in this parameter. The measurements were taken after the most of the
snowpack in the basin had ripened, so density was conservative compared to depth. The test basin is largely above
tree line, and the field work was carried out at a date close to peak accumulation. Both of these factors lead to a
spatial distribution of SCA that produces large areas of nearly 100% snow cover. Figure 13 shows the percentage
of the basin’s total pixel coverage (area) that belong to a given fractional snow cover. This histogram shows that
more than 65% of the basin shows pixels with greater than 90% snow cover; more than 85% of the basin has snow
cover exceeding 50%. This uniform cover allows a binary SCA classifier to produce accurate results because few
pixels are near the threshold where the classifier has trouble making the distinction between snow-covered and
snow-free area. Hall et al. (1996) showed similar results using imagery over the same general region at
approximately the same time of year. Thus, the survey date also provides a best-case scenario for the binary SCA
mapper. If we are only interested total volume in subalpine and alpine areas, then a peak accumulation or early
season survey should suffice.

If we are interested in the timing of the runoff, then we need periodic estimates of snow distribution earlier and
later in the season. Peak snow melt runoff periods for most watersheds in this mountain range frequently occur
while snow lies in the forested areas. As our area of interest increases in size, forested area almost inevitably
increases, while the ratio of alpine to forested area decreases. Forested areas comprise the majority of early season
mixed pixels, where binary mapping algorithms have difficulty producing accurate results. In the case of the
Blackcap Basin, forest area increases substantially as one proceeds down the drainage, while increase in alpine
area is small. As snow cover diminishes through the melt season, experience tells us that the spatial structure of the
remaining snow changes, with the size of snow fields shrinking. Depending on the resolution of the digital imagery,
an increasing fraction of the snow may occur in pixels less than 50% snow covered. The pathological case would
be where the basin was made up of pixels with 49% snow cover. A binary mapper would theoretically map the
entire basin as snow free, although it was actually nearly half covered with snow. This example represents an
extreme case and is not realistic, but it does illustrate a potential source of error that would increase with
decreasing snow patch size. :

The methods we have described to map SWE rely on techniques not likely to become operational soon. The
primary SWE interpolation requires far more data points than exist in an equivalent operational setting. Our
experience with classification and regression trees shows the requirement for hundreds of samples for model
stability. Likewise, the unsupervised spectral unmixing of snow fraction tested thousands of potential mixture
models, which was computationally intensive. However, with the increasing demand to improve the accuracy of
operational products, we point to the potential for limited experiments like we reported here to provide important
data sets for both improving operational methods and learning more about the variables that affect SWE
distribution at different scales. '

SUMMARY

We have shown in this study that binary regression trees can interpolate measurements from a detailed snow
survey of a basin with great extremes of topography, energy balance, elevation and biomes. Using point data alone
the model explained 60-70% of the observed variance of SWE. Unsupervised spectral mixture analysis produced
snow area estimates, on a pixel-by-pixel basis, that offer more detailed information than binary snow maps. We
have shown that merging these data produced adjusted spatial estimates of SWE that are suitable for analyzing the
effects of different methods and variables.
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TABLE 1. Figure 1. Location map of the study basin.
SNOW-COVERED AREA METHOD COMPARISON

ASCA % \«-f‘\
from subpixel
SCA method (ha) % basin estimate
subpixel (0-100%) 7657 82.6 NA
binary (240%) 8834 95.3 133
binary (250%) 7953 87.8 3.7
binary (260%) 7407 79.9 34 WESTERN
UNITED STATES

TABLE 2.

SNOW WATER EQUIVALENCE COMPARISON
RESULTING FROM DIFFERENT
SNOW-COVERED AREA METHODS
A SWE
. fro_m ASWE % KINGS RIVER BASIN

SWE"  subpixel from i

volume estimate subpixel Blackcap Basin
SCA method (m®) (m®)  estimate (inset)
subpixel (0-100%) 89,270,000 NA NA

binary (240%)  101,000,00011,720,000 13%
binary (250%) 93,700,000 4,430,000 5%
binary (260%) 88,700,000 -750,000 -1%
*SWE volume based on 25-node binary tree model
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Figure 2. Locations of field measurements in
Blackcap basin. Small points represent depth
measurements along transects; Large points represent
snow pit sites or location of mean densities calculated
from Mount Rose transect data.

Figure 3. Calculated net radiation over the Blackcap
basin. Dark areas represent low values; bright areas
represent high values. Range is 7Wm™ to
196 Wm™.
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Figure 4. Digital elevation model of the Blackcap
basin. Dark areas represent low elevations; bright
areas represent high elevations. The DEM is a USGS
standard product and is mapped at a 30m grid
resolution. Range is 2476 m to 3827 ma.s.l.

Figure 5. Slope angles in the Blackcap basin. Dark
regions represent flatter areas; light areas represent
steep slopes. The slope mapping was calculated from
the DEM in Figure 4. Range is 0° to 58°, although
actual slopes in the basin certainly reach higher
values.




Figure 6. Twenty five node regression tree for snow depth. The values in the ellipsoidal and rectangular nodes are
the mean snow depths for all points satisfying the splitting criteria leading to the node. Rectangular boxes are
terminal nodes.
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Figure 7. Snow depth mapped over the entire
Blackcap basin using the regression tree shown in
Figure 6. Dark areas represent low snow depth; light
areas represent deep accumulations of snow. Snow-
covered area is not indicated on this map; snow depth
is assigned over the entire basin based on the
regression tree splits. Range is0.99mto 5.43 m.

Coefficient of determination for the

Figure 8.
regression trees from the underfit 2-node tree to the
overfit 35 node tree.
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Figure 9. Snmow density mapped over the Blackcap
basin using a multiple linear regression. Dark areas
represent lower mean densities; light colors represent
higher mean densities. Range is 408kg m™> to
522kgm™>.

522

Figure 10. Subpixel fractional snow-covered area
mapped over the Blackcap basin. White areas
represent snow-free pixels; black areas represent
100% snow-covered pixels. Range is 0 to 100%.
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Figure 11. Binary mapping of snow-covered area Figure 12. Areal mapping of snow water equivalence

derived from the subpixel fractional map in Figure 10. over the Blackcap basin where the snow depth
A is the 40% map where all pixels with 40% or mapping (Figure 7), snow density (Figure 9) and
greater SCA in Figure 10 are considered to be 100% fractional snow-covered area (Figure 10) are
snow covered; B is the 50% map where all pixels with combined. Range is 0to 2.37 m.

40% or greater SCA are considered to be 100% snow
covered; C is the 60% map where all pixels with 60%
or greater SCA are considered to be 100% snow
covered. White pixels are snow-free regions; black
pixels are 100% snow covered.

Figure 13. Histogram of percent basin area covered
by a given snow cover fraction.
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