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ABS CT

Knowledge of the spatial distribution of snow: water equivalence (SWE) is necessary to adequately forecast
the. volume ‘and timing-of snowmelt runoff.. In-April: 1997, peak accumulation: snow depth and -density
measurements were independently taken in the Loch Vale watershed (6.6 km®), Rocky Mountain National Park,
Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow
depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased
estimates that have minimum variances. Snow densities. were spatially modeled through regression analysis.
Combining the modeled depth and density with snow-covered area (SCA) produced an estimate of the spatial
distribution. of SWE.  The kriged estimates of snow depth explained 37-68% of the observed variance.in the

measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a
large degree of heterogeneity in snow depth.

INTRODUCTION

Mountain basins provide natural water storage in the form of a snowpack. About 75% of streamflow in the
western United States results from snowmelt runoff (Doesken and Judson, 1996). Water is the lifeline of this region
as downstream users rely heavily on snowmelt for agricultural, municipal, industrial, and recreational purposes.
However, tremendous difficulties are encountered when trying to accurately predict the volume and timing of this
water supply. The steep and variable topography of alpine catchments leads to a large degree of heterogeneity in
snowpack properties, particularly the snow depth and snow water equivalence (SWE). . The distribution of SWE is
one of the controlling factors in the timing of runoff as different areas of mountain basins may generate snowmelt
more rapidly than others. Before snowmelt models can be efficiently applied to predict the volume and timing of the
release of this water. supply, methods need to be developed to better estimate the distribution of SWE over alpine
basins.

There are many factors which contribute to the variation of snow water equivalence (SWE). - These factors,
including elevation, slope, aspect, vegetation type, surface roughness, and energy exchange, are exaggerated in
alpine areas leading to a heterogeneous snowpack that changes over time (Elder et al.; 1991). In areas with gentle
terrain, studies of seasonal snow cover are manageable as the importance of elevation, slope, and aspect to snow
distribution is greatly diminished.- However, in regions of rugged alpine terrain, undcrstandmg the processes
controlling the spatial distribution of snow is difficult.

Although the further development of remote sensing will greatly benefit the field of snow hydrology, the use
of remote sensing alone to estimate basin-wide SWE for alpine watersheds is not yet fully operational. Although
snow-covered area can be. measured through aerial photography and satellite imagery,; operational measurements of
SWE in mountain environs are still ground-based (Elder et al., 1997). Therefore, interpolation between ground-
based point measurements becomes necessary to explain and understand the spatial distribution of SWE over an
entire drainage basin. Previous research efforts using intensive snow surveys (e.g., Elder et al.; 1991 and: 1997;
Hosang and Dettwiler, 1991; Elder, 1995) have shown progress in distributing measured values of SWE over a
region.

In this-paper, we present a geosl:ansucal method for estimating the spatial dlstnbuuon of SWE in a mountain
watershed in the Colorado Front Range:
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BACKGROUND

Geostatistics emerged in the early 1960°s as a hybrid discipline of mining engineering, geology,
mathematics, and statistics. Geostatistics evolved independently of the mainstream of statistics and its terminology
retains a strong mining flavor. The discipline arose from the need to improve estimates of ore concentration and
recoverable reserves from fragmentary information (Webster and Oliver, 1990). By modeling both spatial trend and
spatial correlation, geostatistics offered a stronger approach to ore-reserve estimation than more classical approaches
(Cressie, 1991). Geostatistical methods are applicable -throughout the Earth sciences, especially the hydrologic
sciences. Examples of such applications include the mapping and modeling of groundwater {(cf., Gambolati and
Volpi, 1979; Dunlap and Spinazola, 1984), estimation of mean arinual precipitation (cf., Tabios and Salas, 1985;
Phillips et al., 1992), and estimation of snow water equivalence (cf., Hosang and Dettwiler, 1991; Carroll and
Cressie, 1996). ; :

Natural phenomena can often be characterized by the distribution of one or more regionalized variables,
which are essentially functions taking a definite value in each point in space (Matheron, 1963). Given the value of a
variable at a point, one is concerned with the variability of the function as the variable changes in space. A
representation of the variability, the variogram, can then be used to estimate the value z(x,) at a point x, at which no
data are available (Journel and Huijbregts, 1978). This interpolation method, known as kriging, consists of three
steps: (1) examining the covariation of data values depending on their separation distance; (2) fitting theoretical
models to these relationships; and (3) using these models to calculate the weights for a particular set of neighboring
points and to compute the interpolated value (Phillips et al., 1992). ;

Experimental Variogram
The first step in the kriging interpolation method is constructing an experimental semivariogram, usually
referred to as a ‘variogram.” The variogram is a representation of the spatial variability of a regionalized variable that
is randomly distributed in space, but shows the degree of continuity embedded within this randomness (Hosang and
Dettwiler, 1991).  To estimate the variogram for an observed spatial process, it is necessary in practice to assume
some sort of stationarity for that process, i.e., a constant mean and constant variance throughout the study region
(Bailey and Gatrell, 1995). All possible pairs of data points are examined and grouped by distance classes. One half
the variance of the difference in values, the semivariance, is then graphed versus the distance class. Thus, the
variogram can be graphed according to:

y(h)=1/2nY [2(x:)— z(xi+ h))? 16h)
i=l
where z{(x)), z(x+h) are samples taken at locations x, and x+h respectively; and » is the number of pairs separated by
the vector h (Herzfeld et al., 1990). The vector h separates the two locations x and x+h in both distance and
direction. The ordered set of values obtained by increasing h constitutes the experimental variogram. Equation (1)
indicates that the variance of z(x) depends on the separation & and not on the actual position of x (Oliver et al.,
1989). Having the same variance for a given distance, regardless of direction, is known as isotropy. = Isotropic
conditions are often assumed to obtain a description of variance structure which is sufficiently simple. “However,
directional differences, or anisotropy; should be tested for by estimating the variogram in various directions.

TFitting a Theoretical Model

The experimental variogram is estimated from discrete values of h, whereas the true variogram is continuous.
Furthermore, the limited number of sample points will usually not allow for an accurate representation of the true
variogram. Therefore, it is necessary to fit a theoretical model to the sample values to represent the true variogram.
The theoretical model is characterized by parameters, which are the nugget effect, the sill, and the range (Figure 1).
The nugget effect, or variance at zero distance, arises from a combination of measurement errors and spatially
dependent variation on scales much shorter than the smallest sampling interval. The sill represents the a priori
variance of the measurements and is the variance to which the variogram asymptotically rises. The range defines the
limit of spatial dependence, i.e., the maximum distance over which interpolation is meaningful (Oliver et al., 1989).

The objective of variogram modeling is to capture the basic structure of spatal dependence. A theoretical
model is fit to the sample data by least-squares regression, or by optimizing through cross-validation procedures.
Three of the most commonly used variogram models; the spherical, exponential, and Gaussian, are explained in
Bailey and Gatrell (1995). Many other theoretical models, both bounded by the sill variance and unbounded, are
explained in detail by Journel and Huijbregts (1978) and Oliver et al. (1989).

Kiriging
Once a theoretical model has been established, kriging interpolation can be performed. At its simplest,
kriging is a method of weighted averaging of the observed values of a measurement space Z, within a neighborhood

V, from the measured values z(x,) of Z at n sites, x,, i=1,2,...,n (Oliver et al., 1989). To calculate an interpolation
value, the weights of the neighboring measurement sites have to be determined by solving a system of equations that
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consider the theoretical variogram model. For simple kriging, interpolations are made using only the variogram for
the variable to be estimated, For cokriging, additional variograms for correlated variables and cross-variograms for
their interactions are used (Phllhps etal., 1992).

: In contrast to all other interpolation schemes, kriging has the major advantage of offering the ability to
calculate the estimation variances associated with the interpolated values. ~Further calculations involving the
interpolated values are, therefore, possible with a determinable uncertainty (Hosang and Dettwiler, 1991).- In
addition, kriging is an exact interpolator, meaning a kriged surface will pass through measured values giving zero
deviance at the sampled points.

STUDY SITE

Loch Vale ‘watershed (LVWS) is located in Rocky Mountain National Park, Colorado, at 40° 17° N, 105°
40" W (Figure 2). This glacially scoured basin lies in the Front Range immediately east and below the Contmental
Divide with elevations between 3091 and 4003 m. The basin has a general east-northeast aspect and is flanked by

steep cliffs on-'most margins. Slopes in LVWS range from a minimum of 0° to a maximum of 85° with the mean

slope for the basin being 33°. The watershed has an area of approximately 6.6 km® and is drained by Andrews
Creek and Icy Brook. Andrews Creek and Icy Brook eventually feed the Big Thompson River, a major tributary of
the South Platte River. A more detailed description of the watershed can be found in Baron and Mast (1992).

FIELD ODS

An extensive snow survey was completed in LVWS during 15-18 April, 1997. Snow depths were measured
at 222 points, and snow densities were measured in seven snowpits (Figure 3). Sample locations were chosen to be
representative of the range of elevations, slopes, and aspects of the watershed with safety constraints. The sample
locations were then transcribed onto the USGS 7.5’ McHenrys Peak Quadrangle. The respective UTM coordinates
were gbta.ined for each sampled site and were registered to a 10 m resolution digital elevation model (DEM) of
LVWS.

The watershed was divided into three subbasins, Andrews Creek, Sky Pond, and Lower Loch (Figure 2),
and maps of each subbasin were enlarged from the USGS 7.5’ McHenrys Peak Quadrangle. Arbitrary grid systems
were aligned with the valley walls of each subbasin. A 50 m grid was placed over the Andrews Creek and Sky Pond
subbasins and a 100 m grid was established for the Lower Loch. The finer resolutions grids were established to
obtain 2 higher concentration of sample points for the upper drainages of LVWS where the heterogeneity in snow
depths was apparent,

Depth measurements- were made with aluminum probe poles. At each sample point, three depth
measurements were made (a central one plus two in directions aligned with the grid at 5 m spacing from the center).
The three measurements were recorded to the nearest 0.05 m and averaged to minimize local variation in depth. In
the upper drainages, only one measurement was made at most sample points and the sampling was shifted to 100 m
spacing due to probing difficulties and time constraints. The spacing between grid points was measured using probe
poles.

Seven snowpits were dug in the watershed to obtain density and temperature profiles. Density was measured

with a 1-L stainless steel wedge-shaped cutter and an electronic digital scale with 1 g resolution and +0.5 g accuracy.
Continuous density. profiles were sampled in 0.10 m increments, which were then averaged to obtain one
representative density for each snowpit. Temperature profiles from the seven snowpits indicated the cold content
had not been entirely removed as snowpack temperatures ranged from near 0°C to -9°C. There was no significant
snowmelt in LVWS before the 15-18 April snow survey.

ODELING ODS

Previous studies have determined a connection between some parameters and the processes controlling the
distribution of snow. Radiative fluxes and physiographic features, such as elevation, slope, aspect, roughness, and
the optical and thermal properties of the substrate, rationally and demonstrably relate to snow cover variations
(McKay and Gray, 1981). In this statistical attempt at modeling SWE across LVWS, we used the 1ndependent
variables of net solar radiation and elevation.
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Net Solar Radiation

Net solar radiation has been shown to be the largest energy source for melting alpine snowpacks (Megehan et
al.; 1967; Zuzel and Cox, 1975). In addition to being the most important component in the energy balance for
modeling snowmelt, net radiation also plays a controlling role in the accumulation and redistribution of snow. - Elder
(1995) found that using a spatially distributed net solar radiation index over a portion of the snow accumulation
season may be sufficient for many applications, such as statistical efforts to model S'WE distribution in alpine areas.

To model net solar radiation in LVWS, we used ipw (Image Processing Workbench) software (Frew ‘and
Dozier, 1986). The ipw program, topquad, integrates the solar radiation inputs over the course of a day to yield
the total solar radiation loading.: The information required for topquad to compute the spatial distribution of solar
radiation includes a DEM, slope and aspect maps, sky view factor, terrain configuration factor, surface albedo map,
and atmospheric parameters. The slope and aspect maps, along with the sky view and terrain configuration factors,
. can be denived from the DEM with ipw. Temporal variations of albedo throughout the accumulation season are too
great to model absolutely, so- we estimated albedo for the visible and near mfrared wavelengths for each month
between December and April (Wiscombe and Warren, 1980) assuming toial basin snow cover. - The atmospheric
parameters required to run topquad can be derived from the model LOWTRAN7 (Kneizys et al., 1988).

Using the 10 m DEM for LVWS, net solar radiation was calculated, assuming clear-sky conditions, for all
grid cellsin the basin for the 15th of each month from December through April. These spatially distributed maps of
daily net tadiation were then summed to obtain one radiation image representing an index of net solar radiation
through a portion of the snow accumulation season (Figure 4). ;

. - Elevation

Primarily through orographic effects, elevation has been shown to be an important factor in snow distribution
(Rhea and Grant, 1974; Caine, 1975). For a small catchment in Switzerland’s Jura Mountains, Hosang and
Dettwiler (1991) found that elevation exerted the strongest influence on the distribution of SWE. - In this study,
elevations were obtained from the 10 m DEM constructed for LVWS (Figure 3). - Vertical errors for the elevations
are assumed to be less than 1 m (Cline, personal communication, 1997).

Snow Density

. Snow. density measurements involve excavating snowpits and sampling the snowpit wall..  Snow depth
measurements. simply Tequire probing and subsequently, are much less labor-intensive and time consuming. In
alpine areas, the major source of variation in SWE is variation in depth, especially during the melt season (Logan,
1973; Elder et al., 1991). The conservative variation of density assists field sampling as a few density profiles can
supplement many more easily obtained depth measurements. ~Although density is conservative in relation to other
snow properties such as depth, it does exhibit some spatial varation (Elder; 1995). Thus, the measured densities
need to be spatially distributed across LVWS. . ; ;

Elevation and slope did not show a significant relationship with snow density; thus, only and index of net
solar radiation was used as the independent variable when modeling density. A general linear model, which
explained 53% of the observed variance in field measurements of snow density, was used to distribute density R>=
0.529, n = 7, p = 0.064).  This general linear model proved sufficient except for low radiation values which
produced unrealistically low densities. Since the snowpits were generally located along the valley floors, the
modeled radiation values for those locations were relatively high due to the combination of direct beam and reflected
irradiance. Therefore, a binary regression tree (Breiman et al., 1984; Clark and Pregibon, 1992) was used to
" determine a representative lower limit radiation value. With snow depth as the dependent variable and net solar
radiation as the independent variable, a regression tree was developed from the 222 sampled snow depth points
using the S-Plus mathematical language (Chambers and Hastie, 1992). Snow depth, instead of density, was used as
the dependent variable because in general terms, with greater depth we expect greater mean densities due to
compaction and metamorphism. In addition, the number of density measureme:s (n = 7) was not sufficient to grow
a regression tree. The regression tree was grown to see if any early splits would correlate with the radiation indices
modeled at the density snowpits. An early split in the regression tree (where the radiation was less than 728 W m?)
correlated well with the measured weighted mean densities. . For all radiation values less than 728 W m?, a snow
density of 300 kg m™ was assigned. = This density value was the lowest wciglhted mean density of the seven
snowpits and was the only measured density with a radiation less than 728 W.m™. Figure 5 shows the distributed
density across LVWS. ; % :

Snow. th
Geostatistical methods were used to model snow depth in LVWS. Using the S-Plus mathematical language
(Chambers and Hastie, 1992), snow depths were spatially distributed across the watershed through kriging

interpolation techniques. Three different snow depth models were developed: (1) kriging on the primary vanable,
snow depth; (2) cokriging using the auxiliary variable radiation to aid th estimates of snow depth; and (3) cokriging
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using elevation as the auxiliary variable. Interpolations were made for each 10 m cell of the DEM in a procedure
known ‘as block kriging. Block kriging operates under the same principles as simple kriging described earlier,
except the interpolated value is averaged over a block; in this case a 10 m cell.

For the three models, experimental variograms were constructed with maximum distance parameters and a
certain number of distance classes, or bins, to best represent the spatial variability of snow depth. The means and
variances -of the regionalized variable were assumed to be independent of location and constant throughout the
watershed.  Since no significant directional differences in the experimental variograms were :found,. isotropic
variance structure was also assumed. These experimental variograms were then fitted with Gaussian, spherical,
exponential, and linear variogram models. These fitted theoretical models were weighted by the number of pairs
found in each bin. The best-fit theoretical variograms used in the kriging interpolations were selected based on the
highest coefficient of determination found through least-squares regression. The results of the variogram fitting
procedure with the variograms for depth and the correlated variables and the cross-variograms for their interactions
are given in Table 1. i :

Table 1. Variogram fitting resuits

Model ' Number of bins for Theoretical model Coefficient of
_ : experimental variogram type determination (R) .
Kriging :
-Depth variogram 25 . Gaussian . 0.890
Radiation Cokriging
-Depth variogram - 25 Gaussian 0.890
-Radiation variogram 20 Spherical . 0.379
-Cross-variogram 15 - Gaussian 0.173
. Elevation Cokriging : :
.-Depth variogram _ 25 .+~ Gaussian 0.890
-Elevation variogram A0 Gaussian 0.976
~Cross-variogram 10 Gaussian 0.692

The Gaussian theoretical model was most frequently used in this study. The Gaussian model is described
. by: . ;
=g, +e1-e3MTY, L for k>0 )
whY =0, forh=0
where ais the range, ¢ is the sill variance, and ¢, is the nugget effect. The experimental variogram and theoretical
Gaussian model fit for the kriging model are shown in Figure 1. -

Cross-validation was used to evaluate the statistical properties of the kriged surface and to determine the ideal
number of nearest neighbors, or sampled depth measurements, to be used in each kriging model. Each sample depth
point, x, was.suppressed in turn, and its value was predicted from the remaining data using the selected variogram
model. A measure of the overall goodness of fit of each kriging model can be assessed by the coefficient of
determination (R*). The coefficient of ‘determination for each kriged surface was calculated from the measured
depths and the kriged estimates of depth at each sample point.

Snow-Covere a.

Snow-covered area (SCA) for this study was determined using an aerial photograph of LVWS taken on 9
April, 1996. No aerial flight was made in 1997, but due to the extreme topography of LVWS, it is assumed that
SCA near peak accumulation will be fairly- consistent from-year to year since most of the steeper slopes in the
watershed cannot maintain snow cover, even during heavy snowfall years. The 9 April, 1996 aerial photograph was
orthorectified to the 10 m DEM for the watershed. A binary threshold was then chosen to most accurately depict
SCA for the orthoimage. The binary threshold was determined such that pixels with a digital number (DN) value
less than the threshold were assigned a DN of 0 (black), and pixels with a DN value greater than the threshold were
assigned a DN ‘of 255 (white). This procedure did not distinguish forested and shaded areas from cliff bands that
were snow free. Therefore, a mask of the forested and shaded areas that were snow-covered was created and
combined with the binary threshold image to produce the final snow-covered image (Figure 6). The SCA for LVWS
was calculated to be 56% of the watershed area.

104



~ RESULTS
Snow Depth

The validity ‘of the kriging interpolations of ‘snow depth was quantitatively examined through cross-
validation. The differences between the measured and kriged estimates of depth, the residuals, were considered as
well as the standard deviation of the estimates and the coefficient of determination for each model.  These evaluations
are summarized in Table 2.

Table 2. Evaluation of kriging interpolation models

Model Number of  Mean of . Absolute Mean Coefficient of
; nearest  residual  value of the standard . . determination
neighbors = s (m) mean of deviation of (R?)
residuals (m)- estimates (m)
Kriging ; <10 0.011 -~ 1301 1.723 S 0.365
Radiation Cokriging 2 0.002 - 0.831 1.909 - 0.684
Elevation Cokriging 2 -0.012 0.828 1.919 0.684

The optimal number of nearest neighbors to be used in each kriging interpolation method was chosen from
cross-validation runs (Figure 7). As is the case for all three models, the mean of the residuals should be centered
around zero. The absolute values of the mean of the residuals indicate that the kriged estimates of depth from the
cokriging models are closer in value to the measured depths.  This characteristic of the residuals also is shown in the
R? values, where the two cokriging models ex?lain more of the observed variance (R® = 0.684) in the field
measurements of depth than the kriging model (R* = 0.365). However, the means of the standard deviation of the
estimates across the watershed show that the kriging model has the lower estimation errors. '

Snow Water Equivalence

The snow water equivalence (SWE) distribution for each kriging model was calculated by multiplying the
kriged depth surface by the modeled density and SCA map (Figure 8). All three models show relatively high SWE
accurnulations in the Andrews Creek subbasin and relatively low SWE accumulations in the Sky Pond subbasin.
The Sky Pond subbasin is broader than the Andrews Creek subbasin, and subsequently receives more direct
radiation (Figure 4). The greater radiation and typical strong winds are considered primary reasons behind the lower
accumulations of SWE around Sky Pond. - The effects of wind redistribution of snow can also be seen along the
western margins of LVWS. These areas, just to the lee side of the Continental Divide, accumulate large amounts of
SWE. The total SWE volumes for each kriging model are listed in Table 3.

Table 3. Snow water equivalence comparisons for kriging interpolation models

Model Mean SWE depth (m) . - Total SWE volume ( m’)
Kriging . 0.63 _ 4,400,000
Radiation Cokriging 0.65 4,500,000
Elevation Cokriging i 0.66 ' . 4,600,000

DISCUSSION

. The cokriging models for both radiation and elevation yield higher R values than the kriging model.
However, the R* values for the two cokriging models rapidly decrease when the number of nearest neighbors
considered in ths kriging interpolation increases. - This phenomenon can possibly be the result of low spatial
correlation between both radiation and elevation and the primary variable, snow depth. The radiation cokriging
model has a negative R*> when the number of nearest neighbors is greater than 12, while the elevation cokriging
model has a negative R* when the number of nearest neighbors is greater than four. These negative R? values
indicate that the variance of the residuals is greater than the variance of the observed snow depths, i.e., the krged
surface is less useful for modeling snow depth than the original surface. On the other hand, the R? values for the
kriging model make more intuitive sense as they increase with increasing number of nearest neighbors (Figure 7).
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Although the cokriging models have higher R values, they only consider a small number of depth
measurements (n = 2) in their interpolation process. : This characteristic inhibits the ability to interpolate depths at
distances far away from the sampled sites and explains the polygonal structure of the cokriged SWE maps (Figures 9
and 10). Cokriging may be advantageous in situations where the auxiliary variables are highly correlated with the
primary variable (Jr| > 0.5; R*> 0. 25) (Phillips et al., 1992). However, radiation (R* = 0.026) and elevation (R* =
0.059) do not show high correlation with snow dspth in this study. The lack of correlation between the auxiliary
variables (radiation and elevation) and the primary varable (depth), along with the small number of nearest
neighbors used in the interpolation process, indicate that the two cokriging models yield rather poor results despite
explaining 68.4% of the variance in the measured snow depths.

. The kriging model only explains 37% of the observed variance in the field measurements of snow depth (R?
= 0.365). This R® value is somewhat low compared to previous studies incorporating kriging techniques.
Promising results from kriging interpolation have been obtained (cf., Tabios and Salas, 1985; Phillips et al., 1992;
Carroll and Cressie, 1996), but these studies dealt with larger spatial scales which tended to smooth the effects of
topography and allowed for significant trends in the data to be found. We feel the extreme topography of the small
LVWS plays the dominant role in this low R* value. Due to its location just below the Continental Divide, LVWS is
subject to strong winds that are funneled by the glacial terrain.  The rugged. terrain forces these winds to have
extremely complex patterns resulting in a mosaic of wind scour and depositional areas. The rugged terrain also leads
to very heterogeneous radiation inputs across the watershed. The steep topography, variable winds, and uneven
radiation balance are primary contributors to the large heterogeneity in snow -depth found in LVWS. This large
heterogeneity in snow depth complicated the kriging interpolation process.

CONCLUSION AND FUTURE WORK

Applying the geostatistical method known as kriging to improve estimates of SWE distribution seems
promising. However, we have encountered difficulty with our initial results in modeling snow depth across LVWS
with kriging interpolation techniques. We look to improve upon our initial results by modeling the large scale
variability of snow depth with binary regression tree methods (Elder 1995, Elder et al., 1997) and modeling small
scale variability with kriging techniques. Binary regression trees can more accurately: handle abrupt changes in the
primary variable, and thus will-be used to model snow depth. The estimated snow depths from the binary regression
trees will be subtracted from the measured snow depths, and the resulting residuals will be modeled through kriging
interpolation. ' Combining the modeled snow depths and modeled residuals should yield more accurate estimations of
the spatial distribution of snow in LVWS.
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Gaussian fit to experimental variogram
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Figure 1. Gaussian fit to the experimental variogram representing the variability of snow depth across LVWS.
The nugget effect c,, the sill ¢, and the range a are indicated. k) is the variogram where h represents the
. distance class. :
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Figure 2. Location of the Loch Vale Watershed (LVWS) and its three subbasins (after Campbell et al., 1995).
Subbasins were delineated to correspond with the sampling grid scheme.
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Figure 3. 10 m resolution digital elevation model of Figure 4. Calculated net solar radiation index over
LVWS. Durk areas are lower elevations; LVWS. Dark areas represent low radiation
bright areas are higher elevations. Locations indices. Bright areas represent high radiation
of field measurements of density and depth indices.
pinpointed by symbols.
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Figure 7. Coefficient of determination (R?) versus
number of nearest neighbors (n) for each
knging model. The optimal n for each model
was selected here (Kriging, n=10; Radiation
Cokriging, n=2; Elevation Cokriging, n=2).

Figure 5. Snow density distributed over LVWS by
regression analysis. Dark areas indicate lower
densities; bright areas are higher densities.
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Figure 8. Snow water equivalence map for Kriging

model. The modeled depths were combined
Figure 6. Snow cover map for LVWS. Image was with the modeled density (Figure 5) and the

produced using a binary threshold which split snow cover map (Figure 6). Dark regions
the watershed into snow covered areas (white) have little or no SWE accumnulation; bright
and snow free areas (black). areas have higher SWE accumulations.
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Figure 9. Snow water equivalence map for Figure 10." Snow water equivalence map for
Radiation Cokriging model. The modeled Elevation Cokriging model. The modeled
depths were combined with the modeled depths were combined with the modeled
density (Figure 5) and the snow cover map density (Figure 5) and the snow cover map
(Figure 6). Dark rcgions have little or no (Figure 6). Dark regions have little or no
SWE accumulation; bright areas have higher SWE accumulation; bright areas have higher
SWE accumulations. _ SWE accumulations:



