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ABSTRACT

Regression tree models have been shown to provide the most accurate estimates of distributed SWE when
intensive field observations are available. This work presents an approach that improves regression tree model
performance by optimizing the use of independent variables and by comparing different residual interpolation
techniques. The analysis was performed in the 19.1 km2 Tokopah basin, located in the southern Sierra Nevada of
California. Snow depth, the dependent variable of the statistical models, was derived from three snow surveys
(April, May and June, 1997), with an average of 990 depth measurements per survey. Estimates of distributed
SWE were derived from the product of the snow depth surfaces, the average snow density (54 measurements on
average), and the fractional snow covered area (obtained from the Landsat Thematic Mapper and the Airborne
Visible/Infrared Imaging Spectrometer). Inclusion of the independent variable northness improved regression tree
model fit. Co-kriging with solar radiation proved to be the best method for dlstrlbutmg residuals for April and
June, with inverse distance weighting providing the best result for May.

INTRODUCTION

It is estimated that snowmelt derived from the Sierra Nevada of California provides 75% of the state’s water
supply for agriculture (Rosenthal and Dozier, 1996). Currently, operational streamflow forecasts are based on
empirical snowmelt runoff models that may not perform well under extreme climatic conditions. As a result, current
research efforts are aimed at estimating stream discharge using physically based snowmelt runoff models. These
models require distributed estimates of snow water equivalent (SWE) for model initialization. SWE estimates
derived from ground observations have also been used to evaluate energy-balance snowmelt models (Cline et al,,
1998) and for validating remotely sensed SWE. Binary regression trees have been used to model the spatial
distribution of SWE from point observations with considerable success (Winstral et al., 2002, Balk and Elder, 2000,
Elder, 1995, Elder et al., 1995). The most commonly used independent variables are net solar radiation, slope,
elevation, and in some cases, vegetation type. Improvements have been obtained by the inclusion of additional
independent variables representing wind redistribution of snow (Winstral et al., 2002) and a cosine transformation
of aspect (Erxleben et al., 2002).

The use of geostatistical techniques to distribute regression tree model residuals has been shown to improve
distributed snow depth estimates (Balk and Elder, 2000, Erxieben et al, 2002). However, poor spatial
autocorrelations of residuals have been cited, which questions the appropriateness of geostatistical techniques. In
the absence of spatially autocorrelated residuals the use of inverse distance weighting (IDW) becomes attractive; as
variogram model fitting can be exhaustive with poor results. This research builds upon previous applications of
regression tree models by identifying the best combination of independent variables and by comparing geostatistical
techniques and inverse-distance weighting to distribute model residuals. Three questions are addressed, First, what
combination of independent variables achieves optimal mode! results? Second, what is the most accurate method
of distributing model residuals? Finally, what is the spatial distribution of SWE in the Tokopah basin during the
1997 field campaigns?
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STUDY AREA

This research was conducted in the 19.1 km? Tokopah Basin of the Sierra Nevada, Ca. located in the alpine
region of Sequoia National Park (36°36’N, 118°40W) (Figure 1). The elevation of this gauged basin ranges from
2622 to 3487 m, with granite bedrock dominant and forest cover restricted to small areas of the valley floor.
Tonnessen (1991) provides a detailed description of the Emerald Lake sub-basin. Nearly all of the precipitation
inputs fall as snow derived from frontal storms originating over the Pacific Ocean. The small amount of summer
precipitation occurs as rainfall predominantly from convective storms.
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Figure 1. The Tokopah basin with 40 m contours and location of meteorological stations.

FIELD METHODS

Ground observations of snow depth and density were collected during three campaigns (April 6th — 12th,
May 8th — 15th, and June 16th — 18th, 1997) (Figure 2). Depth measurements were made on a relatively evenly
spaced grid pattern across the Tokopah basin, with measurement locations separated by approximately 240 m. The
April, May and June snow surveys consisted of 397, 303, and 258, snow depth locations respectively. At each
sampling location 3 depth measurements were collected 5 m apart along transects oriented in the direction of travel
with the center measurement recorded using global positioning systems. The April, May and June surveys
consisted of 19, 76 and 66 snow density measurements respectively. April snow density measurements were
derived from snow pits in which samples were taken at 10 cm vertical intervals using a 1000 cc stainless steel
cutter. May and June snow density measurements were made using a Federal Sampler.

MODELING METHODS

Independent Variables

The topographic variables elevation, slope, aspect and northness were obtained from C-band radar altimetry
flown aboard the space shuttle Endeavor as part of the National Aeronautics and Space Administration’s Shuttle
Radar Topography Mission (SRTM). The 27 m resolution SRTM Digital Elevation Model (DEM) was ingested
into a Geographic Information System (GIS) and used to derive the slope and aspect. The northness parameter was
derived from the product of the cosine of the aspect and the sin of the slope.

Average incoming solar radiation was calculated using TOPORAD (Dozier, 1980; Dozier and Frew, 1990).
Using LOWTRANT7 (Kneizys ef al., 1998), the atmospheric transmission parameters that caused TOPORAD to
match the observed incoming solar radiation values at the Emerald Lake and Topaz Lake meteorological stations
were calculated (Dubayah, 1991). This was done for 5 different atmospheric conditions ranging from clear sky to
cloud cover. Using these atmospheric parameters, TOPORAD was then used to distribute the incoming solar
radiation across the basin. Each hourly solar radiation grid was averaged to derive the incoming solar radiation grid
used as an independent variable in this study.
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Figure 2. Snow depth and density sample locations for April (a), May (b), and June (¢), 1997 in the
Tokopah basin.

The maximum upwind slope (MAXUS) is a terrain-based parameter designed to capture the variability in
snow deposition as a result of wind redistribution (Winstral ef a/., 2002). A histogram of wind direction data from
the Emerald Lake meteorological station was used to define the prevailing wind direction (Figure 3). A 90° pie
shaped area centered on the prevailing wind direction with a radius of 100 m was used to define the upwind area of
each source pixel (Figure 4). Within the upwind area, the algorithm searches along directional vectors at 5°
increments to calculate the greatest upwind slope, S relative to the source cell, m:

ELEV(x,,y,)- ELEV(x,,y,)

e, -5, 40, -3 Y

where a is the azimuth of the directional search vector, ELEV is elevation, (x,y,) are the coordinates of the
source cell, and (x,,y,) are the coordinates of all cells along the directional search vector. The MAXUS value of the

source cell is the average maximum value of each vector within the upwind area: :
] a=310

MAXUS,, (5,335 === 3 Spalxi, )

\ a=220
where n, is the number of search vectors within the search area.
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Figure 3. Histogram of wind direction Figure 4. Pie shaped neighborhood used to calculate
measured at the Emerald Lake meteoro- MAXUS. The algorithm searched along directional vectors
logical station from November 1, 1996 to at 5° increments (example vectors are shown for 310°, 290°,
June 20, 1997 with the 90° window used to 265°, 245° and 220°) to calculate the greatest upwind slope
define the upwind area from each source cell relative to the source cell. MAXUS was determined as the
in the ealenlation of MAXTIR average maximum value of all vectors within a 90° window

surrounding the prevailing wind direction.



Binary Regression Trees

Binary regression tree models predict dependent variables from a suite of independent variables in a non-
linear hierarchical fashion. Binary recursive partitioning is used to bin a dataset into increasingly homogeneous
subsets. In this application various combinations of independent variables were included into separate tree models
(Table 1). All of the models included elevation, solar radiation and maximum upwind slope as these variables have
been shown to piay an important role in snow distribution (Elder er al., 1995, 1998, Balk and Eider, 2000, Erxleben
et al., 2002, Winstral ef al., 2002). For each combination of independent variables a tree was intentionally grown to
over-fit the data as described in Chambers and Hastie (1993). Ten-fold cross-validation procedures were then used
to generate plots of model deviance versus number of terminal nodes. Tree sizes that minimized model deviance
were examined for further consideration. Trees were then grown with the number of terminal nodes restricted to all
integer values between 2 and 30 and resultant coefficient of determmatmn (R } plotted versus number of terminal
nodes. The tree model that resulted in the lowest deviance and highest R” was then checked for unrealistic node
splits and used to predict snow depth across the basin. These surfaces were then qualitatively compared to previous
studies of snow distribution in the basin (Elder, 1995, Cline ef al., 1998). A detailed description of the tree fitting,
pruning and cross-validation procedures can be found in Breiman er al. (1984), and an application to snow depth in
Elder er al. (1995, 1998) and Balk and Elder (2000).

Table 1. Independent variables used in the 5 different regression tree models.

mode! number

independent variable i 2 3 4 5
. sol rad Y Y Y Y Y
elevation Y Y Y Y Y
maxus Y Y Y Y Y
slope Y Y Y Y
aspect Y Y
northness Y Y

Residual Interpolation »
Inverse distance weighting, kriging and co-kriging, with the aforementioned independent variables, were

used to distribute snow depth residuals from the regression tree models.

Inverse distance weighted interpolation predicts cell values using a linearly weighted combination of
neighboring points, where the weight is based on the inverse of the distance between the predicted cell and the
neighboring points. Typical use of IDW employs a weighting exponent of 2 but advances in GIS software have
afforded easy calculation of an optimized weighting exponent, designed to minimize the RMSE of the interpolation.
In this study two IDW approaches were applied and results compared. 1. Using an optimized weighting exponent,
IDW,y, and 2. using the squared exponent, IDW,. For a detailed description of IDW see Isaaks and Srivastava
(1989).

Geostatistical techniques have been used to distribute point snow depth values across regional scales
(Carroll and Cressie, 1996) and at the basin scale (Hosang and Dettwiler, 1991). Kriging and co-kriging techniques
have been used to distribute regression tree model snow depth residuals (Erxleben ef al., 2000, and Balk and Elder,
2000). As a preliminary step to kriging the spatial autocorrelation of the snow depth residuals was assessed using
the Moran’s I statistic (Kaluzny et al., 1998). Kriging is based on fitting a model to the variogram to obtain weights
that are used to assign values to unsampled locations. The variogram was calculated as:

h)= Z(x; )—Z(x; +h
yh) == (h)gl( )20 +1)]

where m(h) is the number of sample pairs separated by distance 4, Z(x;) and Z(x; + h) are the residual value
pairs at location x; and x; + A respectively. Spherical, gaussian and exponential models were fit to the variogram

and the model resulting in the lowest RMSE was selected.
The kriging interpolator was then applied:

Z(x,)= Saz(x)
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where Z(x,) is the estimate of the residual snow depth at location x,, A; is the weight assigned to the
known snow depth residual Z(x;) at location x,. The sum of the weights, A;, must equal 1.

The dependent variable snow depth is known to vary as a function of independent variables such as
elevation, siope and incoming solar radiation. Thus, some cross-correlation between these variables may exist and
the use of co-kriging becomes attractive. As a preliminary step to co-kriging, cross-variograms were developed
between the snow depth residuals and each independent variable (i.e. co-variable):

For(h) = o8 (205, )= 205, + W) box, )+ wix, + 1)
2m ( h)ij=1
where w is the value of the co-variable at location x;.
Once the cross-variograms were calculated co-kriging models were developed using spherical, gaussian and
exponential model fits. As with kriging, the model fit resulting in the lowest RMSE was selected.
The co-kriging interpolator was then applied:

Z(%,)= z/l Z(x%)+ £ aw(x,)

J‘ =1
A
where Z(x,) is the estimate of the residual snow depth at location xo, A7 is the weight assigned to the
known snow depth residual, Z(x), at location x;, and 17 is the weight assigned to the known co-variable value, w(x)

at location x;. The sum of the weights, 17 and A must equal 1 and 0 respectively. Detailed descriptions of the
procedures described above can be found in Isaaks and Srivastava (1989).

The accuracy of the residual interpolation methods was assessed by jack-knifing each data point and
deriving an error value for each observation. Results of each residual interpolation method were compared to the
optimal regression tree model to assess whether or not the residual interpolation improved the results of the
regression tree. Statistical comparisons were done using the mean absolute error, the RMSE and the coefficient of
determination (R?) of each model.

Snew Density

Snow density varies much less than does snow depth, making complex modeling unwarranted (Elder, 1995).
Additionally, complex techniques are unwarranted because of the small density sample size and poor correlation
with independent variables. Multi-variate linear regression models were developed between observed snow density
and all aforementioned independent variables. A correlation coefficient matrix was calculated to identify variables
that were signifi cantly correlated with snow density. Using the correlated independent variables, regression models
were developed. R? values and analyses of varlance were used to assess model performance. IDW was also used to
explain the variability in snow density. The R statistic was used to determine if the IDW models couid be used.

Snow Covered Area
Satellite imagery from the Landsat Thematic Mapper (TM) on April 6, June 9, and June 25 1997 were used

to construct fractional snow covered area (SCA) images across the basin using the spectral mixture analysis
algorithm of Rosenthal and Dozier (1996). Imagery from the Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) was also used to obtain fractional SCA data on May 8, 1997 using the spectral mixture analysis model
for subpixel SCA, grain size, and albedo described by Painter ef al. (2003). The April 6 and May 8 SCA images
were acquired on the first day of each respective snow survey. The June 9 and June 25 SCA images were averaged
to obtain fractional SCA estimates corresponding to the time of the June snow survey (i.e. June 18). The 30 m
resolution SCA surfaces were scaled to 0 — 1 for use in the SWE calculations described below.

Snow Water Equivalent
For each simulation the SWE of each pixel, p, within the basin was determined:

SWE, =d, x(p, + p, )xSCA4,

Where dj, (m) is the modeled snow depth, p; (kg m™) is the modeled snow density and p, is the density of
water (1000 kg m™).



RESULTS

Field Observations

The mean snow depth of each snow survey decreased from April fo June while snow density increased over
the same- period (Table 2). Snow depth variability increased throughout the melt season while snow density
variability decreased from April to May and increased slightly from May to June (Table 2). Snow depth variability
was considerably greater than that for snow density (Table 2}.

Table 2. Summary statistics for snow depth (cm) and snow density (kg m™) field measurements
including standard deviation, std. dev., coefficient of variation, cv, and sample size, n.

April May June

density depth density depth density depth
minimum 252 0 384 0 421 22
maximum| 517 795 652 540 743 454
mean 422 255 520 168 600 128
std. dev. 70 97 46 85 63 67
cv 0.17 0.38 0.09 0.51 0.11 0.52
n 19 397 76 303 66 258

Binary Regression Trees
Results from the cross validation showed that model deviance was minimized when solar radiation,

elevation, MAXUS and northness were used as independent variables for all simulations (Figure 5a). Model fit
improved with the addition of northness for all of the simulations as shown by the plots of coefficient of
determination (R?) versus number of terminal nodes (Figure 5b). Improvements in R? for the June simulation were
not found for smaller tree sizes (i.e. below 10 terminal nodes) (Figure 5b) and therefore northness was not used to
construct the final tree for June. All of the other models listed in Table 1 yielded model deviances and model fits
somewhere between the extremes shown in Figure 5 (plots not shown).
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Figure 5. Model deviance (a) and coefficient of determination (R?) (b) versus number of terminal nodes for regression
tree models with and without northness. “All models included elevation, average incoming solar radiation, and
maximum upwind slope. '

Results of the cross-validation indicated optimal tree sizes of 8, 11 and 10 nodes for the April, May and
June simulations respectively (Figures 6a-c). The importance of the different independent variables is indicated by
the order at which they appear in the tree (Elder, 1995). The April tree was able to explain 33% of the variability of
snow depth with an RMSE of 79.4 cm (Table 3). The May tree was able to explain 48% of the variability while the
June tree explained 40% of the snow depth variability. RMSE values for the May and June simulations were 62.2
cm and 52.6 c¢m respectively (Table 3).
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Figure 6. Regression tree snow depth (¢m) models for April (a), May (b) and June (c), 1997 in the Tokopah basin,

Table 3. Mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination
(R%) values for all snow depth interpolation models, Tokopah basin, 1997.

April May June
Model MAE RMSE R? MAE RMSE R? MAE RMSE R?
regression tree 61.65 79.41 0.33 47.47 62.19 0.48 40.02 52.57 0.40
IDW 62.15 80.37 0.33 46.40 60.89 0.50 41.18 55.01 0.36
IDW-OPT 59.86 76.97 0.38 45.37* 59.54% 0.52* 40.23 53.36 0.3%
krig 61.78 80.09 0.34 45.55 59.97 0.51 39.45 52.07 0.41
co-krig, srad 58,12* 76.18* 0.39* 45.60 60.04 0.51 39.45* 52.06* 0.41%
co-krig, slope 58.56 76.57 0.38 45,59 60.04 0.51 39.45 52.06 0.41
co-krig, northness 58.76 76.40 0.39 45.60 60.04 0.51 39.44 52.06 0.41
co-krig, maxus 58.14 76.18 0.39 45.59 60.04 0.51 39.45 52.07 0.41
co-krig, elevation 58.14 76.18 0.39 45.60 60.04 0.51 39.45 52.06 0.41

*best model

Residual Interpolation
Snow depth residual interpolation for April improved model fit by 1.7% 1o 18%, with IDW, yielding the

poorest results and co-kriging with solar radiation giving the best results (Table 3). For the April simulation
optimization of the IDW exponent to a value of 1.09 resulted in an improvement over IDW, but not over the co-



kriging models. April RMSE values increased when kriging and IDW, were used to model the distribution of the
model residuals (Table 3), Co-kriging with solar radiation decreased the April RMSE by 4%. The April Moran’s 1
value (p = 0.024) indicated that the residuals were spatially auto-correlated (p < 0.05). Hence kriging models
performed more accurately than the IDW models. April variograms and cross-variograms for snow depth residuals
and solar radiation are shown in Figure 7a-c.

May model fit increased by 5.3% to 8.8% using the different residual interpolation methods, with IDW,
yielding the poorest results and IDWy, with an exponent of 1.27, the best results (Table 3). May RMSE values
decreased by 4.3% and 2.1% for the IDW, and IDW, models respectively. May RMSE values decreased by 3.5%
on average using the different co-kriging and kriging models. The Moran’s 1 value (p = 0.103) was not significant
at the 0.05 level, indicating that the May residuals were not spatially auto-correlated. Hence IDW,,: performed
better than the kriging and co-kriging models. May variograms and cross-variograms for snow depth residuals and
solar radiation are shown in Figure 7d-f.

snow depth residuals solar radiation cross-variogram
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Figure 7. Variograms fit with spherical models and cross-variograms fit with gaussian models for
snow depth residuals and solar radiation for the April (a —¢) and May, 1997 (d-f) interpolations.

June R® values increased by 3.1% using all of the kriging and co-kriging models. Co-kriging with solar
radiation performed slightly better then the other geostatistical methods for the June simulation (Table 3). June R?
values decreased using both of the IDW models (Table 3). June RMSE values decreased by only 1% using co-
kriging with solar radiation, while RMSE values increased for both of the IDW models (Table 3). The June
Moran’s T (p = 0.08) was not significant at the 5% confidence level however it was significant at the 10%
confidence level indicating that slight spatial auto-correlation of residuals exists.

Snow Density

The independent variables northness and slope only explained 22% of the April variability. The Analysis of
variance (ANOVA) F-statistic (Ott, 1993) was not significant at the 5% confidence level (p = 0.154). MAXUS and
slope explained only 11% of the snow density variability for May. ANOVA results were significant at the 5% level
(p = 0.05). Solar radiation and slope explained 10% of the variability for June; with ANOVA results significant at
the 5% level (p = 0.043). Poor model results may be a result of sampling errors caused by inconsistent use of the
Federal Sampler. The standard error of the estimates were 6%, 4%, and 3% lower than the standard deviations of
the April, May and June observations respectively. Lower R? values were obtained using IDW with an exponent of
2. Given the poor results of the attempted models, the mean observed snow density value of each snow survey was
used in the SWE calculation as per Erxieben et al. (2002).

Snow Covered Area
SCA decreased throughout the snowmelt season (Figure 8). SCA decreased by 6% between the April and
May snow surveys and by 62% between the May and June surveys.
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Figure 8. Fractional snow covered area for the Tokopah basin from the Landsat Thematic Mapper
{a oY and the Airhorne Vicihle/Infrared Imasine Snectrometer (h)

Snew Water Equivalent
The mean April SWE was the same for all of the geostatistical techniques, with IDW,y resulting in a

negligible decrease in SWE (Table 4). Maximum April SWE was considerably higher using IDW,, and thus the
standard deviation and the coefficient of variation was slightly above the values obtained using geostatistical
techniques. April SWE distributions showed a distinct difference between the higher SWE accumulations in areas
south of the valley floor relative to areas north of the valley floor (Figure 9a). Especially high SWE was predicted
on the northeast facing slopes of areas south of the valley floor because of lower incoming solar radiation and
leeward slope orientation.

Table 4. Statistical summaries for April, May, and June, 1997 SWE simulations for the Tokopah basin. Statistics
shown are the resuitant values when the three best geostatistical techniques and the best IDW techniques were used
to distribute residual snow depths. The minimum value of all of the simulations was 0.

April May June*
cokrigelev  coknig-maxus _ cokng-srad 1IDW cokrig-maxus  cokrig-slope  kniging  IDW.,, cokrig-north  cokrig-stad  cokng-elev
maximum 230,14 230.01 229.77 266,78 22092 22114 22092 28041 166.51 166.15 166.15
. mean 105.48 105.49 105.49 105.20 79.42 7943 7942 7979 2629 2627 26.27
std. dev. 3027 3027 3031 3133 38.54 38356 38.54 39.13 26.86 26.83 26.83
ov 0.29 029 029 .30 0.49 0.49 0.49 0.49 1.02 1.02 1.02

“IDW not used because of poor results,

Mean SWE using IDW, was greater than the mean SWE of all of the geostatistical techniques during May
(Table 4). The maximum value and standard deviation was also greater for IDW,. The spatial distribution of May
SWE showed a similar pattern to that of April (Figure 9b). The mean SWE decreased from the April simulation but
the standard deviation increased. SWE differences across the basin are visually more pronounced than April.

All of the geostatistical techniques produced similar SWE statistics for June (Table 4). IDW interpolation
of snow depth residuals was not used to generate modeled SWE distributions in June because of the poor result of
the method. June SWE distribution became somewhat uniform in areas where snow remained (Figure 9¢) and the
standard deviation decreased from the May value (Table 4).
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Figure 9. Distributed SWE estimates for the Tokopah basin, 1997.
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DISCUSSION

Binary Regression Trees
Binary regression trees have been used to estimate the spatial distribution of snow depth in complex

topography like that of the Tokopah basin with considerable success in some cases (Balk and Elder, 2000, Elder ez
al., 1995) and marginal success in others (Erxleben er al., 2002). It is particularly challenging to capture factors
that result in leeward slopes accumulating several meters of snow, while nearby windward slopes become snow-
free due to wind scour. Previous studies are not directly comparable given that the coefficient of determination R
is the measure of model success commonly used and R” increases with increasing number of terminal nodes (Flgure
5b) (Erxleben 2002, Winstral ef al., 2002, Balk and Elder, 2000, Elder, /1995, Elder ef al., 1995). Thus, comparing
only R? values becomes subjective because different tree sizes are used for different applications. Neveﬁheless
quantitative comparisons are useful when associated caveats are stated. The average regression tree model fit (R?
of 0.44) of this research. was encouraging relatwe to other studies. Model fit was considerably better than the
results of Erxeleben er al. (2002) (average R = 0.25). Differences are likely due to the fact that, in the alpme
terrain of this study, the independent variables were better able to explain snow distribution patterns than in the
forested terrain of Erxleben’s study in the Colorado Rocky Mountains. Balk and Elder (2000) yielded better results
(R? = 0.59) than obtained in this study but in a much smaller catchment (6.9 km?) and using an 18 terminal node
regression tree.

The issue of catchment size is not trivial. Snow distribution patterns of two small adjacent catchments may
not correlate with independent variables in the same manner because the processes controlling snow distribution are
only applicable over a narrow range of conditions (Elder, 1995). Elder (1995) found that 10-node regression trees
applied in the Tokopah basin in 1993 and 1994 yielded average R? values of 0 40, while tree models constructed for
sub- basms of the Tokopah, ranging from 0.69 to 1.78 km? in area, yielded R? values ranging from 0.6 to 0.8. The
average R? value of 0.44 obtained in this research is therefore considered an improvement over the work of Elder
(1995) and could be considered comparable to R? values in the range of 0.6 to 0.8 for catchments with areal extents
less than or equal to approximately 2 km?,

Winstral er al. (2002) impm\ ed model fit from an R? of 0.35 to 0.5 with the addition of terrain parameters
designed to capture the variability in snow depth due to wmd redistribution. The results presented here compare
well considering that Winstral’s work was done in a 2.25 km” basin. In addition to the difference in scale, the lower
R? values obtained in this research may be due to the fact that in the Tokopah basin wind redistribution of snow
occurs only during and immediately following snowfall due to the warm air temperatures of the region (Elder,
1995), whereas in Winstal’s continental study area wind redistribution of snow may persist for a much longer
period of time after snowfall.

This research has built upon the aforementioned applications by showing that in addition to MAXUS,
additional terrain variables (i.e. northness) requiring minimal computational effort can further improve model
results. The need for the northness variable arose when regression tree results without the northness variable
resulted in snow depth overestimates in the northwestern region of the basin known as the north valley (Figure
10a). The extent of the overestimates became apparent when the snow depth estimates were qualitatively compared
to previous studies of snow distribution in the Tokopah basin (Elder, 1995). Addition of the northness variable
removed this problem and resulted in lower overall model deviance (Figure 3a), improved model fit (Figure 5b) and
removal of the overestimates in the north valley (Figure 10b).

snow depth, cm

Figure 10. Distributed snow depth estimates from binary regression trees for April, 1997 using average
incoming solar radiation, elevation, and maxus (a), and with the addition of northness (b). The ellipse
indicates the Nnrth Vallev where snow denth was averestimated withont narthness
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The lower model fit obtained in April (R = 0.33) may be due to the fact that the processes controlling snow
distribution can be statistically modeled more accurately when snowmelt begins to play a significant role in snow
distribution. This is supported by the absence of elevation in the April tree (Figure 6a); elevation does not seem to
play a large rofe in snow distribution in the Tokopah basin until later in the snowmelt season when snowmelt begins
in the lower elevations. Elevation appears on the second tier in the May and June regression trees (Figure 6b,c).

Residual Interpolation :
This research has shown that simplistic residual interpolation techniques, such as IDW,,, can give better

results than complex techniques, such as Kriging and Co-kriging, when residuals are not spatially auto-correlated.
Previous applications have not used IDW to distribute regression tree residuals to simulate snow depth.
Geostatistical techniques performed better than IDW,; for April and June but the average difference in the RMSE
of these simulations was only 2%, suggesting that sufficient results are obtained using the more simplistic IDW
approach (Table 4). Furthermore, the use of IDW,, made an average difference of only 0.4% in the basin-wide
mean SWE.

The substantial difference in the range of the SWE surfaces (12% higher on average using IDW,y) is due to
inherent differences in the interpolation procedures; IDW will not over or under estimate the input data, but it can
approach the max and min values, creating a surface that has hills and valleys about the data points. Depending on
the power used in IDW, nonlinear upward or downward trends in the surface will extend to the data points from the
regional average. The co-kriging process creates a smoother surface than IDWey in which the upward and
downward trends are "cut off" (D. P. Guertin, University of Arizona, personal communication, 2003). The
smoothing is inherent when fitting the model to the semivariogram, with the co-variable adding to the smoothing.

CONCLUSIONS

‘This research has shown that, in addition to previously used independent variables, northness can improve
binary regression trees by increasing the model fit and minimizing overall model deviance. The utility of northness
should not be unique to the Tokopah basin and further investigation is warranted in other regions. Using IDWq to
distribute model residuals is a viable alternative to co-kriging techniques and may improve model accuracy when
residuals are not spatially auto-correlated. The models predicted significantly more SWE in southern portions of
the basin, with spatial variability decreasing throughout the snowmelt season. SWE distributions were predicted at
accuracy levels quantitatively and qualitatively comparable to previous studies.
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