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ABSTRACT 
 
 The spatial scarcity of meteorological observations represents a significant challenge for distributed 
hydrological modelers. Mesoscale models can provide a physically-based approach to supplement surface 
observations over high-elevation terrain. The heavily instrumented North Fork American River basin in California 
offers an optimal study location to verify mesoscale model output. Gridded 6km surface temperature and 
precipitation were obtained from the Weather and Research Forecasting (WRF) model, which uses lateral boundary 
conditions from the North American Regional Reanalysis. Results indicate that during the wet season, the WRF 
model was shown to well represent the inter-annual variability of the large scale temperature lapse rate and the 
orographic gradient of precipitation. Errors in the WRF model’s temperature and precipitation were of a similar 
magnitude to those errors using a low-elevations station coupled to a standard lapse rate and Precipitation 
Regression on Independent Slopes Method (PRISM). A distributed hydrological study to evaluate if the WRF based 
forcing improves simulated snowpack and streamflow remains as future work. (KEYWORDS: Mesoscale, 
distributed, hydrology, lapse rate, orographic precipitation gradient, PRISM) 
 

INTRODUCTION 
 
Forecasted surface warming over the next century will drastically reduce the global seasonal snowpack that 

provides over 40% of the world’s drinking water (Meehl et al., 2007). On a seasonal basis, the accurate prediction 
of peak snow water equivalent (SWE), as well as significant melt events, would allow watershed managers to more 
efficiently manage their watershed networks. Distributed energy balance models can realistically simulate internal 
basin dynamics, as long as accurate input data are available (Reed et al., 2004). However, reliable meteorological 
input that is distributed across the basin is one of the most difficult requirements of distributed models.  First, few 
observational stations typically exist within mountainous basins. Second, where stations do exist, temperature and 
precipitation are most often the only variables measured; requiring relative humidity and incoming radiation to be 
estimated via empirical relationships that are dependent on temperature and precipitation. Finally, the extrapolation 
from point measurements to a distributed grid can introduce additional errors when insufficient observational 
stations exist to resolve spatial patterns.  

 
 An alternative option to generating temperature and precipitation driving data is to use a physically based 
numerical weather prediction model. The development of these models to represent surface conditions has been 
motivated by the demand for short-term (< 7 days) weather prediction. Numerical weather prediction models that 
have grid cells on the order of 1-36 km are commonly referred to as mesoscale models (Maraun et al. 2010). Within 
many hydrologic basins, the density of mesoscale model grid cells has surpassed the density of available surface 
observations, especially at high elevations. Increased spatial resolution has allowed numerical weather prediction 
models to resolve the topography that drives orographic precipitation gradients.  In addition, when mesoscale 
models are forced by synoptic scale observations of circulation they have been shown to capture the correct timing 
of storms (Colle and Mass, 2000; Westrick and Mass, 2002; Wang and Georgakakos, 2005).  
   
 This paper examines the ability of the mesoscale model, the Weather and Research Forecasting (WRF) 
model to capture the elevational gradients of temperature and precipitation over the North Fork of the American 
River Basin (850 km2), located on the western slopes of the Sierra Nevada mountain range in California (Figure 1).  
This basin was chosen because of its unusually dense network of observational stations, which range from near sea 
level to 2300 meters in elevation. This unique observational network allows us to validate WRF model’s 
performance across the 0°C isotherm zone (~1400-2000 m), where rain transitions into snow and hydrologic 
modeling is the most sensitive to meteorological errors (Lundquist et al., 2008b). Because most basins do not 
contain as many observations as the North Fork Basin, we create a gridded forcing set (temperature and  
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precipitation) based on the observations from one low-elevation station in order to provide a control forcing set. 
The two forcing sets derived from the WRF model output and the one low-elevation station are compared to all 
observations over the North Fork Basin and we ask the question: “On what temporal scales can the WRF model 
resolve the observed elevational gradients in temperature and precipitation?” 
 
 

 
Figure 1.  Map of the North Fork American River Basin located on the western slopes of the Sierra Nevada, and 
locations of the observational stations and WRF 6km grid cell centers used. Insert shows the 6km domain of the 
WRF model over California and location of the North Fork Basin. The location of the Secret Town station, which 
was used as the base station to extrapolate temperature and precipitation, is also shown. 

 
OBSERVATIONAL DATA 

 
 Hourly observations of temperature and precipitation for water years 2001-2010 were obtained from 10 
weather stations operated by the California Department of Water Resources (data available through the California 
Data Exchange Center, http://cdec.water.ca.gov/). In 2005, the National Oceanic and Atmospheric Administration’s 
Hydrometeorological Test Bed (NOAA/HMT) program installed meteorological stations spanning the elevation 
range of the American River Basin (Ralph et al., 2005). Two minute measurements of temperature and precipitation 
were obtained at 13 HMT stations in or near the study basin. In addition, 4 self-recording temperature sensors 
distributed in trees across the basin (following methods in Lundquist and Huggett, 2008) provided temperature data 
from 2006-2010. 
 
 All observational data were closely quality controlled. Unrealistic outliers and extreme jumps in data were 
removed following Meek and Hatfield (1994). The 2 min precipitation and temperature measurements from HMT 
were aggregated to hourly if at least 75% of that hour was available; otherwise it was flagged as missing. Due to the 
limited measurement of wind speed at all stations, no correction for precipitation gauge undercatch was attempted. 
 
 The Secret Town station (Figure 1) was selected as the base station for the control forcing. This choice was 
made because Secret Town is below 1000 m, where the majority of stations are placed, as well as having minimal 
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missing data over the 2001 to 2010 period. However, energy balance hydrological models require continuous input 
data as they step through time. Therefore, missing periods of data at Secret Town were filled following Liston and 
Elden (2006). Temperature data with less than one hour missing were interpolated between adjacent hours. For 
missing data greater than one hour but less than 24 hours, each missing hour was estimated as the mean temperature 
from the same hour on the previous and following day. Missing data greater than 24 hours was repaired by 
interpolating temperature from nearby stations using monthly lapse rates between stations. Missing precipitation 
(0.5% of 10 years) was assumed to be zero.  
 

ATMOSPHERIC MODELS 
 
 This paper attempts to isolate the periods when a mesoscale mode can provide improved driving data to a 
hydrological model. The output from a given mesoscale model may differ depending on the large scale (>36km) 
forcing it receives at its boundary. In order to remove possible biases in the mesoscale model caused by its lateral 
boundary conditions, a reanalysis product was used as the large scale driver.  
 
North American Regional Reanalysis (NARR) 
 The NARR reanalysis is a 32km/45 layer product created by ingesting surface and upper air observations 
over the continental U.S. by the Regional Data Assimilation System into the NCEP Eta Model to produce a spatial 
and temporal consistent data set (Mesinger et. al. 2006). NARR’s lateral boundary conditions are provided by the 
NCEP-DOE Global Reanalysis, and NARR data exists for the time period 1979-present. NARR can be considered 
one of the best representations of the meteorological record at this resolution. 
 
Weather Research and Forecasting Model (WRF) 
 The 32km NARR reanalysis provided initial and lateral boundary conditions for a high resolution dynamical 
downscaling generated by the Weather Research and Forecast model (WRF, Skamarock et. al., 2007). The 
downscaling simulation contained two domains: an 18km horizontal resolution domain that covered California and 
extends west over the Pacific Ocean, and a 6km domain over California (Figure 1). At 6km horizontal resolution, 
all the major mountain complexes in California are resolved, but the fine-scale topography surrounding the river 
basin is not resolved. Two-directional nesting was employed between the 18- and 6-km domains. Each domain 
contained 27 vertical levels, with the vertical grid stretched to place the highest resolution in the lower troposphere. 
In the 18-km domain, the Kain-Fritsch cumulus parameterization was used (Kain, 2004); in the 6-km domain only 
explicitly resolved convection could occur.  Both domains used the YSU boundary layer scheme (Hong, Noh and 
Dudhia, 2006), the Morrison 2-moment microphysics scheme (Morrison, Thompson and Tatarskii, 2009), the rapid 
radiative transfer model longwave radiation scheme (Mlawer et al., 1997), the Dudhia shortwave radiation scheme 
(Dudhia, 1989), and the Noah land surface model with 4 ground layers (Chen and Dudhia, 2000).  
 
 The downscaled data was generated for 10 partial water years (Oct.-June water years 2001-2010). 
Throughout this period, WRF was reinitialized three hours prior to the first of each month and every 5 days, 3 
hours, thereafter. The first three hours of each run were discarded for model spin-up, resulting in a temporally 
continuous run, with slight meteorological discontinuities between the full model initializations. The interior 
conditions are updated from NARR at each initialization, and the lateral boundary conditions are updated 
continuously throughout the run from the NARR boundary conditions (which have 3-hourly temporal resolution). 
The dynamical downscaling technique used here has been shown to well-capture the variability in meteorological 
conditions over an 11-year period in Southern California when generated with the Penn State/NCAR mesoscale 
model, version 5, WRF’s predecessor (Hughes and Hall, 2010; Hughes et al., 2009).  
 

METEOROLOGICAL FORCING SETS 
 
A) WRF Model Based 
 Surface output from 61 of WRF model’s 6km grid cells located inside or within a boundary of one grid cell 
from the North Fork Basin were extracted (Figure 1). The boundary width was chosen to allow optimal 
interpolation along the basin edges. Because 98% of North Fork Basin precipitation occurs Oct through June 
(National Climatic Data Center [http://www.ncdc.noaa.gov/oa/ncdc.html]), we restrict our analysis to these months. 
At each grid cell, hourly 2 meter temperature and precipitation were extracted from the WRF model for water years 
2001-2010.  
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B) Observational Based  

It is common for basins within complex and inaccessible terrain to only have one available observational 
station at low to middle elevations. The gridded input required by distributed hydrological models, must then be 
created by extrapolating temperature and precipitation from this base station to rest of the basin. We simulate this 
type of observationally based forcing set by using the Secret Town station (Figure 1) as our base station. This 
choice was made because Secret Town is below 1000 m, where the majority of stations are placed, as well as 
having minimal missing data over the 2001 to 2010 period of interest (1% temperature, 0.5% precipitation). The 
continuous temperature record from the Secret Town station was extrapolated using an annual lapse rate of -6.5 
°C/km, based on Californian climatology (Daley et al. 2004). Precipitation was extrapolated using the spatial 
weighting from the 30 arc second (800 m) 1971-2000 climatological normals product, derived using the Parameter 
Regression on Independent Slopes Method (PRISM) (Daley et al. 2004). 

 
RESULTS 

 
Temperature 
 Estimated gradients of mean temperature within the North Fork Basin were compared to fifteen temperature 
observations across the basin (Figure 1). Figure 3 shows the mean October through April temperature versus 
elevation for each water year between 2001 and 2010. The Secret Town station and -6.5 (degree) C/km forcing set 
unsurprisingly matches observations, as this lapse rate is based on northern Sierra Nevada stations . However, this 
method can result in biases at all elevations if the base station does not represent the mean temperature of its 
elevational band.  
 The WRF model does very well at capturing the observed large scale lapse rate. Yet, its temperature 
gradient does not capture the full variability that is observed during water years 2006 to 2010, when additional 
stations are available. The linear gradient of the WRF model is most likely a result of its inability to resolve small 
scale topographic variations can have a large effect on local temperature (Lundquist et al. 2008). Further 
downscaling that incorporates higher resolution elevation maps may improve the realistic nature of the WRF 
model’s temperature. Nevertheless, the temperature gradients from the WRF model capture the large scale 
observered lapse rates and perform as well as those based off of the Secret Town station and an annual linear lapse 
rate.  

 
 

Figure 2. Mean Oct-April temperature versus elevation for water years 2001 through 2010. Black stars show the 
WRF model mean temperature for each of the (61) 6km grid cells. The grey line represents the mean temperature 
extrapolated from the Secret Town station using a -6.5 °C/km lapse rate. Observations from ibutton, HMT and 
CDWR stations are shown. 
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Figure 3. Total Oct-April accumulated precipitation versus elevation for water years 2001 through 2010. Black stars 
show the WRF model precipitation for each of the (61) 6km grid cells. The grey crosses represent the observed 
precipitation at the Secret Town station extrapolated using weights from PRISM climatology (see text for details). 
Observations from HMT and CDWR stations are shown. Note: water year 2006 required a different x-axis scaling. 
 
Precipitation 

The orographic precipitation gradient (OPG) dominates the distribution of rain and snow over the Sierra 
Nevada. Figure 4 shows the total accumulation of precipitation versus elevation between October and April for 
water years 2001 through 2010. Observed precipitation shows large inter-annual variability; water year 2006 
received over 2.5 meters at high elevations whereas in the 2007 water year only accumulated 1.2 meters. The 
PRISM based data set has the same OPG because the same climatological weights were used for each year. As the 
PRISM product includes as many stations as possible into its weighting, it is expected to perform well over the 
highly instrumented North Fork Basin. Differences between each year are due to variations in observed 
precipitation at Secret Town, which effectively shifts the OPG. One of the limitations of using this method of 
extrapolation is that biases in the base station create biases at all other elevations. Such as is the case during water 
year 2006, where the PRISM based data set would have resulted in a ~500 mm wet bias in precipitation. In 
contrast, the WRF model precipitation captures the variability of the OPG for all years, yet shows a wet bias during 
2001 and 2003. Although these results are for one basin, it is significant that the WRF model can simulate the 
variability of the OPG as well as PRISM within a basin with so many observations.  

 
CONCLUSION 

 
 The lack of temperature and precipitation observations within complex terrain creates a significant obstacle 
for distributed hydrological modeling. Methods of extrapolating those observations are vulnerable to biases when 
these base stations do not represent the basin wide conditions, and are not even feasible when no observations exist. 
The WRF model’s 6km grid cells were shown to well represent the inter-annual variability of the large scale 
temperature lapse rate and the orographic gradient of precipitation. In general, the WRF model’s temperature and 
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precipitation have comparable skill to traditional extrapolation methods. This study basin is unique in that the  
North Fork Basin has a far greater number of observations than average, which would favor the use of fitted 
temperature lapse rates and PRISM weighted precipitation maps. Although this remains to be shown, we 
hypothesize that over basins with few to none observations, the WRF model will show a larger improvement over 
traditional methods of generating distributed temperature and precipitation input for hydrological models.                                                                                                                           
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