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ABSTRACT 

 
Many groups depend on climate data from federal and state supported weather station networks such as the 

NRCS’s SNOTEL, and NOAA’s Climate Reference Network. While data from these stations are typically of high 
quality, there is no statistical parameter available to the public that quantifies the bias and the magnitude of errors in 
a time series. A time series error analyses could possibly detect subtle data anomalies, and problems with sensors, 
while providing a general level of confidence in the data for the user.  HYDRUS-1D was used to construct a 
physically-based flow model for water and thermal fluxes for a SNOTEL site in Oregon from June 1, 2008 0:00 to 
October 31, 2011 23:00.  Soil moisture and temperature values were predicted using the model and then compared 
to soil data measured with Hydra Probe soil sensors placed at 5, 10, 20, 50 and 100 cm. Simulations on hourly data 
sets typically yield RMSE from about 0.01 to 0.05 and 1 to 3 degrees C for soil moisture and temperature 
respectively. Model efficiencies decrease and RMSE increase for soil moisture with the presence of the winter snow 
pack when using degree day based model for snow water equivalent. (KEYWORDS: time series, physically-based 
model, meteorological station, quality assurance, cloud computing)  
 

INTRODUCTION 
 

State and government sponsored weather station networks such as the NRCS’s SNOTEL network and 
NOAA’s Climate Reference Network are playing many important roles and are critical for water supply and draught 
forecasting as well as a broad number of climate research studies. Many of these network weather stations and 
weather stations operated by universities take hourly measurements of weather parameters such as precipitation, air 
temperature, solar radiation wind speed/direction and humidity. In addition to the standard weather parameters, 
many of these weather stations have Hydra Probe soil sensors at several depths measuring soil moisture and 
temperature. While the data from most of these weather stations are of high quality with routine station maintenance, 
few tools have been proposed that address the level of confidence for any particular data set or real time data strings. 
One such tool capable of identifying data anomalies in precipitation and air temperature data is Parameter–Elevation 
Regressions on Independent Slopes Model (PRISM). PRISM is a statistical spatial regression model that is capable 
of accurately predicting precipitation and air temperatures in areas where physical measurements do not exist (Daly, 
2008). While PRISM can statically identify data anomalies in air temperature and precipitation in data sets, it does 
not address the quality assurance of the other critical parameters such as soil moisture, solar radiation, relative 
humidity, wind speed, and soil temperature. 
 

In this study, a new physically-based model approach was employed to generate time series performance 
statistics to be used as a quality assurance tool for data sets measured by remote metrological stations. The specific 
objective of work is to develop a quality assurance method employing a physically-based modeling approach that 1) 
provides quantitative confidence parameters for meteorological station performance, 2) identify subtle data 
anomalies, and 3) characterize the magnitude and bias generated from data anomalies.           
 

With this physically-based model, the measured meteorological parameters which include wind speed, 
%RH, air temperature, precipitation, and solar radiation are used to predict the soil water content and soil 
temperature. The predicted soil data is then compared to the soil data measured with the soil sensors. The statistical 
level of agreement between the predicted and the measured soil data can then be used as a quality assurance tool for 
data sets measured at a particular weather station.  The motivation for this work is to provide a quality assurance tool 
for users of meteorological stations that have soil sensors. Future topics will include model refinements and the use 
of cloud computing to perform the computations automatically in real time from real time data acquisition.  The  
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work also shows the potential increased value soil sensors and cloud computing can bring to meteorological stations 
equipped with telemetry.     
 

PHYSICALLY-BASED MODEL  
 

Vadose Zone Hydrology 
Water movement in unsaturated soil can best be described by the one dimensional Richard’s equation 

(Richards 1931),    
 

                                                                                                                                              [1] 
 
 
where θ is soil moisture (cm3cm-3), t is time, h is unsaturated water potential head, z is depth and S(h) is a loss term 
that includes evapotranspiration (ET).  In this model, the potential ET is calculated using the Penman-Montheith 
combination equation from the atmospheric flux boundary conditions (FAO, 1990).  The K(h) is the head dependent 
unsaturated hydraulic conductivity which can be determined by the van Genuchten-Mualem Model described by 
equations [2a], [2b], [3] and  [4] (van Genuchten, 1980). The van Genuchten-Mualem Model for determining the 
numerical values of K(h) is based on a soil’s moisture to head relationship which is commonly referred to as the soil 
water retention curve. A soil water retention curve is the plot of a soil’s water potential head verses soil moisture. 
The fitting parameters of the mathematical function of the retention curve shown in equation [2a] along with the 
effective saturation value, Se(h) can be used to estimate the K(h) using equation [4] for soil with variable water 
contents (Warrick, 2003).  In equations [2a], [2b], [3] and [4],  θr is the residual water content,  θs is the water 
content at saturation, θ(h) is head dependent soil moisture, and n and α are empirical fitting parameter where m=1-
1/n, and Ks is the saturated hydraulic conductivity.  An h value greater than or equal to zero indicates a soil moisture 
value over its field capacity described by equation [2a] and [2b].  
 

𝜃(ℎ) =
𝜃𝑠 − 𝜃𝑟

[1 + |𝛼ℎ|𝑛 ]𝑚                  when    ℎ < 0                                                                   [2a] 

 
                  𝜃(ℎ) =  𝜃𝑠                     when     ℎ ≥  0                                                                        [2b] 

 
𝑆𝑒(ℎ) =  𝜃(ℎ)− 𝜃𝑟

𝜃𝑠−𝜃𝑟
                                                                                                             [3]                
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The ℓ term in equation [4] is tortuosity which is assumed to be 0.5 (Šimůnek, 2005). In this work, the modeling 
software HYDRUS-1D which uses van Genuchten-Mualem Model and finite difference  numerical solution to the 
Richard’s Equation was used to calculate soil moisture values from atmospheric boundary flux conditions and soil 
water retention parameters (Radcliffe, 2010).   
 
Thermal Fluxes 

Soil thermal fluxes are highly influenced by water content and include both thermal conduction and 
convection which can be described by equations [5], where T is temperature, t is time, and z is depth.  Cp and Cw are 
volumetric heat capacities for the porous media and water respectively (Radcliffe, 2010).  
 

𝐶𝑝(𝜃)
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The first term in equation [5] represents heat flow by conduction, and the second term takes into account the water 
contribution of the heat flow, and the heat flux associated with root water uptake where;  
 

𝜕𝜃
𝜕𝑡 =

𝜕𝐽𝑤
𝜕𝑧 − 𝑆                                                                                                          [6] 
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S in equation [6] is the evapotranspiration/water loss term from equation [1]. The heat capacity of the soil/water/air 
matrix is described by equation [7];  
 

𝐶𝑝(𝜃) = 𝐶𝑠(1−𝜑) + 𝐶𝑜𝜃𝑜 + 𝐶𝑤𝜃 + 𝐶𝑎𝑎                                                                               [7] 
  

where Cs, Co, Cw, and Ca are the heat capacities of individual solid, organic, water and air phases respectively and θo, 
ɑ, and φ are the water content of the organic portion, air fraction, and porosity. The water dependent soil thermal  
conductivity λ(θ) can be approximated by equation [8] (Chung, 1987). 
 

               𝜆(𝜃) = 𝑏1 + 𝑏2𝜃 + 𝑏3√𝜃                                                                                                   [8] 
            

Where b1, b2 and b3 are empirical coefficients’ that are based on soil texture. For heat fluxes, HYDRUS-1D uses a 
finite element iterative approach to numerically solve equation [5]. 
 

MATERIALS AND METHODS  
 

Study Area  
This model was applied to a Billy Creek Divide SNOTEL Site #344. Billy Creek Divide is located in 

Southern Oregon in the Cascade Range about 5.5 kilometers southeast from Mount McLaughlin approximately 1609 
meters in elevation.  The site represents a typical SNOTEL location which is situated in an alpine environment that 
maintains a snow pack for most of the winter and spring. The site receives about 125 cm of precipitation per year 
most in the form of snow.  Snow pack at Billy Creek Divide begins in late November or early December and 
disappears in early June. The site is forested with conifer trees ranging from 10 to 20 meters in height with sparse 
small shrubs on the forest floor. The soil has a very thin O horizon with 3 distinct A horizons going down to 23 cm 
and B horizons going down another 200 cm. The soils in these horizons are about 70% sand and 30% silt. More site 
information can be found at;   (http://www.wcc.nrcs.usda.gov/snotel/Oregon/oregon.html).  
 

The site contains the standard SNOTEL instrumentation with real-time Meteor Burst telemetry. There are 
analog Stevens Hydra Probe Soil Sensors at 5 depths connected to a Campbell data logger. Wind speed and direction 
are measured with a RM Young 1503 wind sensor. Solar Radiation is measured with a Li-Corr pyrometer, total 
precipitation is measured with Sensotec pressure transducer in a “rocket” style collection gage, SWE is measured 
with a snow pillow and the air temperature is measured with a YSI X-Range sensor.    
 
Statistical Parameters  

The calculated, and measured, data can be compared by the commonly recognized root mean square error 
(RMSE) and the mean error (ME).  The RMSE is defined by equation [9] (Loague, 1991) and the ME is described by 
equation [10] (Hall, 2001) where Ci is the calculated values generated by the models and Mi is the measured soil 
data.  
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The RMSE is indicative of the magnitude of the error between calculated and measured data while the ME represents 
the bias. If the ME is a negative number, then the model is under predicting the measured data or the soil sensors are 
over estimating the data. The closer the RMSE and the ME get to zero, the better the agreement between the model 
and the measurements. If the RMSE and ME become large (or ME more negative), it may be difficult to determine if 
the error is associated with the sensors or the model itself; therefore a third statistical parameter is necessary, the 
model efficiency Ef  (Loague, 1991).   
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The model efficiency is the skill term used where the closer to one, the better the model performance (Krause, 
2005). Unlike r2, Ef can be negative which indicates that model predicted values are worse than the mean of the 
measured values (Refsgaard ,2003).   
 
Model Setup  

The hydrological model HYDRUS-1D was used to predict soil moisture and temperature at the depths 
where the soil sensors are placed (at 5, 10, 20, 50 and 100 cm) from hourly atmospheric boundary flux conditions 
with the soil thermal and water retention parameters. Simulations were run starting from June 1, 2008 0:00 (hour 1) 
to October 31, 2011 23:00 (hour 29,952) with hourly outputs. The minimum and maximum time steps were 
specified at   2.4 x 10-6 and 12 hours with a maximum of 30 iterations insured model convergence.  
 
Table 1. Soil water retention curve parameter for the van Genuchten-Mualem Model for each horizon.  
 
Horizon/ 
Depth 

θr θs α n Ks %Sand %Silt 

A1, 2-8 cm 0.001 0.393 0.0413 1.4693 2.88833 71.3 24.6 
A2, 8-13 cm 0.001 0.391 0.0405 1.4692 2.71458 71.6 23.4 
A3, 13-23 cm  0.001 0.3931 0.0413 1.4693 2.88833 28.1 67.8 
B1, 13-52 cm 0.001 0.3938 0.0475 1.7009 4.50375 18.9 79.1 
B2,   >52 cm 0.001 0.3938 0.0475 1.7009 4.50375 16.8 81.3 
 
Table 2.  Thermal parameter of the soil corresponding to equation [7] and [8].    
 

 
 Solid 
Fraction b1  b2 b3 Cs   Co  Cw 

All 
Depths 6.069E-01 -9.191E+11 -4.488E+12 1.176E+13 2.49E+11 3.253E+11 5.42E+11 
 
Table 1 and 2 contain the soil water retention parameters and the thermal properties. The longitudinal thermal 
dispersivity is assumed to be 5 cm and the organic matter is assumed to be negligible.  
 

The data measured with the Hydra Probe Soil Sensors was recalibrated from the direct probe measurement 
of the real dielectric permittivity using the general soil calibration described by Seyfried (2006).  The atmospheric 
boundary flux conditions are air temperature, relative humidity, total precipitation, wind speed, and solar radiation. 
There are several data gaps in the data. The largest data gap was the soil sensor at 101 cm was not reporting from the 
beginning of the simulation until 7/14/2008. The model simulations took the data gap into account.  
 

Model output for the five depths was collected for ten output data sets per month (one approximately every 
three days). Each output data set is a model output for  ten randomly selected hours for a given month containing 
each of the five depths.   The ME, RMSE and the Ef were calculated two different ways.  First the ME, RMSE and Ef  
are calculated for each horizon separately for the output data sets on a monthly basis. Second, the ME, RMSE and Ef 
are calculated for each output data containing each horizon on a daily basis. This approach will capture both the 
conditions in the individual horizons on a monthly basis and also capture daily time series conditions for the system 
as a whole. Tables 3 and 4 illustrate this approach.    
 

RESULTS AND DISCUSSION 
 
Data Anomaly and Time Series Data  

Data tables 3 and 4 show the results for the ten output data sets for soil moisture for September 2008. Table 
3 is representative of how the model behaves at different depths. The prediction at the 50 cm depth is typically less 
consistent with the measured values than the other depths. For the 50 cm depth, the ME is consistently negative and 



the RMSE is typically 3 to 4 times bigger than the other depths throughout the entire 3 year simulation period. The 
typical ME and RMSE for the 50 cm depth when compared to the other depths suggests that there is a problem with 
the Hydra Probe placement at this depth, a problem with the model setup or incorrect soils data leading to an 
incorrect Ks.  Table 4 shows the time series data for the output data sets for the same  September 2008 time period.  

 
Table 3, Ef, ME and RMSE for the September 2008 soil moisture output data sets. 

 
Depth (cm) Ef ME RMSE 
5 0.93 0.00 0.00 
10 0.36 0.01 0.01 
20 0.71 -0.01 0.01 
50 0.68 -0.04 0.04 
101 0.71 0.03 0.03 
 
Table 4. Soil moisture output data sets for soil profile in a time series both containing the 50 cm data and without the 
50 cm data.  
 

   Containing data at 50 cm   Data at 50 cm removed 

Date Time Hour ME RMSE Ef  ME RMSE Ef 
9/3/2008 6:00 2263 0.00 0.02 0.45  0.01 0.01 0.71 
9/3/2008 12:00 2269 0.00 0.02 0.34  0.01 0.02 0.52 
9/4/2008 12:00 2293 0.00 0.02 0.37  0.01 0.02 0.38 
9/7/2008 18:00 2371 0.00 0.02 0.45  0.01 0.01 0.63 
9/9/2008 18:00 2419 -0.01 0.03 0.04  0.00 0.02 0.42 

9/13/2008 6:00 2503 0.00 0.03 0.32  0.01 0.02 0.41 
9/17/2008 0:00 2593 -0.01 0.02 0.34  0.00 0.02 0.62 

9/19/2008 12:00 2653 0.00 0.02 0.48  0.01 0.01 0.69 
9/25/2008 0:00 2785 0.00 0.02 0.51  0.01 0.01 0.69 
9/29/2008 0:00 2881 -0.01 0.02 0.39  0.00 0.01 0.67 

 
 

On the left hand side of table 4, all of the horizons are included in the calculation for RMSE, ME and Ef.  
The right hand side of table 4 shows the RMSE, ME and Ef  on the same data set only with the 50 cm removed. After 
removing the 50 cm data, the overall time series ME goes from negative to positive, the RMSE improves by about a 
factor of two at most times.  
 
Snow Melt on Time Series Data   

In this alpine environment, the soil will remain wet at or slightly below field capacity starting in the fall 
when the season precipitation starts until the snow pack disappears in June. The soil stays moist during the winter 
because there are occasional melting events in the winter months while ET is at a minimum. After the snow pack 
disappears in early June, precipitation seasonally decreases and ET becomes large drying out the soil. Figure 2A, 
2B, and 2C shows the calculated and measured soil moistures for the 2008 season spring melt and soil dry out 
period.  In the simulations that generated Figure 2A, 2B and 2C, the RMSE, ME and Ef were calculated for the whole 
data set for the time period from June 2008 to October 2008.  
 



 
Figure 1. RMSE and ME for 2008, comparing modeled vs measured soil moisture.  
 
 
 
Snow Hydrology and Snow Pack Errors 

Most of the precipitation at the Billy Creek Meadows site is in the form of snow and thus the soil water 
content is mostly attributed to snowmelt. Snowmelt processes in an alpine setting can be complex and can be driven 
by many factors other than temperature such as dust particles in and on the snow surface, sublimation, and the 
thermal properties of the vegetation (Ewing, 2007).   
 

Contained within the Hydras code, is a simplified snow hydrology feature based solely on air temperature. 
The model assumes that if the air temperature is below -2oC, all precipitation will be in the form of snow, and if the 
temperature is above +2oC, the precipitation will be rain. A linear transition occurs between -2o and 2o C. If the 
temperature is above zero C, the model calculates the rate at which the snow will melt by equation [12] (Šimůnek, 
2005, 2008 & 2009).  
 

TaKs = Md       [12] 
 

Where Ta is the air temperature, Ks is the snow melt constant and Md is the daily SWE reduction to the snow pack.  
Typical vales for Ks are 0.02 to 0.6 cm/C and the default value is 0.43 cm/C.   
 
Figure 3 is a plot of the SWE both reported from the SNOTEL site and calculated in HYDRUS using equation [12]. 
The model over predicts the SWE from 11/8/2013 to about 11/18/2013 where it under predicts the SWE until the 
end of the season. A more robust snow melt model that takes into account the thermal properties of the canopy and 
ground litter may be required to achieve an output consistent with the SNOTEL data. The degree day method can 
generate large errors in SWE; and consequently, introduce large errors in the model’s boundary flux conditions 
which in turn leads to large errors in simulated soil moisture and temperature outputs during times when there is a 
snow pack (Wöhling, 2009). Table 5 shows the ME, Ef and RMSE for two different time frames during snow pack 
conditions. The top part of table 5 is for a time period during which the  model is over predicting the SWE and the 
bottom part of table 5 shows output when the model under predicts the SWE.  There are noticeable differences in the 
output statistics between the two data sets.  For soil moisture, the RMSE, and ME for the times the model is under 
predicting SWE are half that from the times the model is over predicting SWE. Similarly, the model efficiency 
improved when the model is under predicting the SWE when compare to when it is over predicting SWE. The 
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behavior of the temperature outputs for the under or over predictions of SWE are less pronounced than what was 
observed on the soil moisture data.     
 
Induced Error Perturbation and Statistical Parameter Reponses  
 With no snow pack in the summer months, typically HYDRUS 1D generates outputs that reasonably 
resemble the measured data from June through September.  Table 3 shows values that are typically observed for 
times with no snow pack. For the June of 2008  soil water data set, the RMSE ranged from 0.01 to 0.04, the ME from 
0 to -0.03 and the Ef remained close to 1. To observe and test the data set quality assurance potential of HYDRUS, 
simulations were performed that contained a perturbation of known biases in the meteorological boundary condition 
data set. This was performed by intentionally introducing errors into the meteorological boundary conditions so that 
the differences between the modeled outputs and the measured sensor data values could be compared. This test 
would demonstrate the sensitivity of  the HYDRUS model’s ability to detect data anomalies in a meteorological data 
set.  The data that was chosen for this test was  June of 2008 because it had a high skill and a low bias and absolute 
error. To simulate a rain gage malfunction, 0.1, 0.2 and 0.3 cm of precipitation were manually added to the hourly 
precipitation input data followed by modeled simulations for each condition. Figures 4A, 4B, and 4C show  the 
results. The differences are noticeable starting at 0.1 cm of rain an hour and only get more pronounced with the 0.2 
and 0.3 cm simulations. It’s interesting to note that the model simulation had about a 7 day lag time before the 
anomaly was detected.  
 
Table 5,  Depth, time series statistics, and model efficiencies during periods of under and over prediction of SWE.  
(* indicates no data available)  
 

11/8/2008 through 11/18/2008 (SWE over predicted) 
 Soil Moisture   Temperature   

Depth (cm) Ef ME RMSE Ef ME RMSE 

5.0 0.949 0.040 0.052 -12.693 -1.975 8.848 
10.0 0.811 0.076 0.084 0.521 0.554 1.785 
20.0 0.883 0.050 0.069 0.548 0.813 1.746 
50.0 * * * -0.097 3.487 4.408 

101.0 -0.028 -0.192 0.211 * * * 
       
 11/23/2008 through 12/8/2008  (SWE under predicted)  
 Soil Moisture   Temperature   

Depth (cm) Ef ME RMSE Ef ME RMSE 

5.0 0.997 -0.008 0.010 -1.166 -0.853 2.124 
10.0 0.938 0.038 0.039 -0.093 -0.940 1.927 
20.0 0.978 0.024 0.026 0.595 -0.716 1.257 
50.0 * * * 0.892 -1.117 1.159 

101.0 0.953 -0.042 0.043 * * * 

 
At that time, a spike begins to occur in the statistical parameters.  Ef begins to drop, the bias becomes positive which 
would be expected and the absolute error increased. The spikes in the statistical parameters begin to subside in mid 
June as ET increases.  
 

To test the model’s sensitivity to data anomalies in an air temperature sensor, error in the air temperature 
input data was manually introduced followed by model simulations. A bias of -5.0 degrees C was manually 
introduced to the air temperature data set from June to September 2008 followed by model simulations of soil 
temperature. The model simulation that contained the air temperature bias were compared to the model simulations 
that did not contain the bias. Figures 5A, 5B and 5C impose the ME, RMSE and the Ef for the simulations that 
contained the introduced bias with the simulation that did not contain the introduced bias.  In Figure 5A, the ME  

 



 

 
Figure 2A. Depth of 5 cm. Calculated and measured soil moisture during spring snow pack melt.  
 

 
Figure 2B. Depth of 10 cm. Calculated and measured soil moisture during spring snow pack melt. 
 

 
Figure 2C. Depth of 20 cm. Calculated and measured soil moisture during spring snow pack melt. 
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Figure 3  SWE measured at SNOTEL site compared to the modeled SWE with HYDRUS  showing that the  model 
has a tendency to over predict from 11/6/2008 11/18/2008 and under predict SWE from 11/18/08 through mid 
December 2008.  
 
 

 
Figure 4A. Model efficiencies for no induced error,  induced error of  0.1, 0.2 and 0.3 cm additional  hourly precip.  
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Figure 4B. Mean Error for no induced error,  induced error of  0.1, 0.2 and 0.3 cm additional  hourly precip.  
 
 

 
Figure 4C. RMSE for no induced error, induced error of  0.1, 0.2 and 0.3 cm additional  hourly precip.  
 

 
Figure 5A.  Mean Error for no induced error, and induced error of  -5.0 degrees C.   
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Figure 5B.  RMSE for no induced error,  and induced  error of -5.0 degrees C.  
 

 
Figure 5C. Model efficiencies for no induced error,  and induced error of   -5.0 degrees C.   
 
shifts by -2 to -6 over the simulation time frame. The RMSE and the Ef shift slightly with strong spikes at various 
points over the simulated time frame.    
 
Future Work 
 Future work would include running simulations that take into account the thermal properties of canopy and 
organic ground litter such as with Simultaneous Heat and Water (SHAW) model (Flerchinger, 1989) to improve 
model performance. This would provide more reasonable SWE, soil moisture and temperature estimates during time 
when a snow pack is present. A different use of the statistical parameters may be a better indicator of data 
anomalies. Also, data anomalies may be better captured on near surface simulation outputs.    
  

SUMMARY 
 

Physically-based hydrological modeling of meteorological station data can be used to detect data anomalies 
in data sets and could be an indicator for malfunctioning sensors. Physically-based hydrological model simulations 
were performed using HYDRUS 1D on a data set taken from a SNOTEL station in southern Oregon. The statistical 
parameters, ME, RMSE and Ef ,between the model output and the soil moisture and temperature data collected with 
the Hydra Probe soil sensors were used as quantitative indicators of data set anomalies.  The simulations revealed a 
potential data anomaly in the soil moisture data at 50 cm. While HYDRUS 1D provide accurate model simulation 
outputs during the summer months,  HYDRUS 1D’s degree day method for calculating SWE lead to model 
deviations for periods when a snow pack was present at this particular alpine site. When data anomalies were 
manually introduced into the data sets, the statistical parameters of the model simulation had a visible response.    

 

0 

2 

4 

6 

8 

10 

06/01/08 06/21/08 07/11/08 07/31/08 08/20/08 09/09/08 09/29/08 

RM
SE

 

RMSE 

RMSE -5 C 
Induced Bias. 

-4 

-3 

-2 

-1 

0 

1 

2 

06/01/08 06/21/08 07/11/08 07/31/08 08/20/08 09/09/08 09/29/08 

Ef
 

Ef 

Ef -5C Induced Bias. 



REFERENCES 
 
Chung S.-O., and R. Horton.  1987.  Soil heat and water flow with a partial surface mulch, Water Resources Res., 
23(12), 2175-2186.  

Ewing, P. J.  2007.  From the Tree to the Forest:  The Influence of Sparse Canopy on Stand Scale Snow Water 
Equivalent. Department of Forest, Rangeland and Watershed Stewardship M S Thesis, Colorado State University, 
Fort Collins, Colorado.  

Daly, C., M. Halbleib, J.I. Smith, W.P. Gibson, M.K. Doggett, G.H. Taylor, J. Curtis, and P.A. Pasteris.  2008. 
Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. 
International Journal of Climatology, 28: 2031-2064. 

Flerchinger, G. N., and K. E. Saxton.  1989.  Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil 
System I. Theory and Development. ASAE Paper No. 87-2567, Vol.32(2): March-April 1989 

Food and Agriculture Organization of the United Nations.  1990.  Expert consultation on revision of FAO 
methodologies for crop water requirements, ANNEX V, FAO Penman-Monteith Formula, Rome, Italy. 

Hall, J.M.  2001.  How well does your model fit the data? J. Hydroinform. 3:49–55. 

Krause, P.,D. P. Boyle, and F. B¨ase1.  2005.  Comparison of different efficiency criteria for hydrological model 
assessment. Advances in Geosciences, 5, 89–97, 2005 

Loague, K., and R.E. Green.  1991.  Statistical and graphical methods for evaluating  solute transport models: 
Overview and application. J. Contam. Hydrol. 7:51–73. 

Refsgaard, J. C., H.J. Henriksen.   2004.  Modeling guidelines––terminology and guiding principles. Advances in 
Water Resources 27 (2004) 71–82. 

Radcliffe, D. E., and J. Šimůnek.   2010.  Soil Physics with HYDRUS Modeling and Applications. CRC Press.  

Richards, L.A.  1931.  Capillary conduction of liquids in porous mediums. Physics 1, 318–333. 

van Genuchten, M.T.  1980.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. 
Soil Sci. Soc. Am. J. 44 (5), 892–898. 

Šimůnek, J., M. Šejna, H. Saito, M. Sakai, and M. Th. van Genuchten.  January 2009.  The HYDRUS-1D Software 
Package for Simulating the One-Dimensional Movement of Water, Heat, andMultiple Solutes in Variably-Saturated 
Media. Version 4.08. 

Šimůnek, J., M.Th. van Genuchten, and M. Sejna.  2008.  Development and Applications of the HYDRUS and 
STANMOD Software Packages and Related Codes. Vadose Zone J. 7, 587-600. 

Šimůnek, J., M.Th . van Genuchten, and M. Sejna.  2005. The Hydrus-1D software package for simulating the one-
dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ. of California, 
Riverside. 

Chung S.-O., and R. Horton.  1987.  Soil heat and water flow with a partial surface mulch, Water Resources Res., 
23(12), 2175-2186  

Seyfried, M. S., L. E. Grant, E. Du, and K. Humes.  2005.  Dielectric Loss and Calibration of the Hydra Probe Soil 
Water Sensor. Vadose Zone Journal 4:1070–1079 (2005). 

Sophocleous, M.  1979.  Analysis of water and heat flow in unsaturated-saturated porous media, Water Resour. Res., 
15(5), 1195-1206,  

US Department of Agriculture, Natural Resources Conservation Service Snow Survey Program,  
http://www.wcc.nrcs.usda.gov/snow/ 

Warrick, A.W.  2003.  Soil Water Dynamics. Oxford University Press. 

Wöhling, T.  2009.  Does vadose zone flow forecasting depend on the type of calibration data? 18th World IMACS / 
MODSIM Congress, Cairns, Australia, 13-17 July. 

http://www.wcc.nrcs.usda.gov/snow/�

